首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of lanthanides(III) (La-Lu) and Y(III) with 3,4,5-trihydroxybenzoic acid (gallic acid) were obtained and their thermal decomposition, IR spectra and solubility in water have been investigated. When heated, the complexes with a general formula Ln(C7H5O5)(C7H4O5nH2O (n=2 for La-Ho and Y: n=0 for Er-Lu) lose their crystallization water and decompose to the oxides Ln2O3, CeO2, Pr6O11, and Tb4O7, except of lanthanum and neodymium complexes, which additionally form stable oxocarbonates such as Ln2O2CO3. The complexes are sparingly soluble in water (0.3·10–5–8.3·10–4 mol dm–3).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
Double oxalates of rare earths(III) and rubidium with the general formulae RbCe(C2O4)2 4.5H2O, RbLn(C2O4)24H2O (Ln=Yb, Lu), RbLn(C2O4)2·3.5H2O (Ln=La, Pr-Dy), and RbLn(C2O4)2·3H2O (Ln=Ho, Er, Tm, Y) were synthesized. They were characterized by chemical analysis, TG, DTG and DSC over the temperature interval 20–500C and X-ray powder diffraction examination. At the chosen final temperature (500C), either oxide (Ln2O3) or basic carbonate Ln2O2CO3) and Rb2CO3 were obtained, depending on the rare earth(III) element. On the basis of the X-ray diffraction patterns, the isolated compounds can be divided into five isostructural groups.  相似文献   

3.
The scandium(III) cations in the structures of pentaaqua(biuret‐κ2O,O′)scandium(III) trichloride monohydrate, [Sc(C2H5N3O2)(H2O)5]Cl3·H2O, (I), and tetrakis(biuret‐κ2O,O′)scandium(III) trinitrate, [Sc(C2H5N3O2)4](NO3)3, (II), are found to adopt very different coordinations with the same biuret ligand. The roles of hydrogen bonding and the counter‐ion in the establishment of the structures are described. In (I), the Sc3+ cation adopts a fairly regular pentagonal bipyramidal coordination geometry arising from one O,O′‐bidentate biuret molecule and five water molecules. A dense network of N—H...Cl, O—H...O and O—H...Cl hydrogen bonds help to establish the packing, resulting in dimeric associations of two cations and two water molecules. In (II), the Sc3+ cation (site symmetry 2) adopts a slightly squashed square‐antiprismatic geometry arising from four O,O′‐bidentate biuret molecules. A network of N—H...O hydrogen bonds help to establish the packing, which features [010] chains of cations. One of the nitrate ions is disordered about an inversion centre. Both structures form three‐dimensional hydrogen‐bond networks.  相似文献   

4.
The polymeric title compounds, namely catena‐poly[[[di‐μ‐but‐2‐enoato‐κ3O:O,O′;κ3O,O′:O′‐bis[diaquadibut‐2‐enoato‐κO2O,O′‐neodymium(III)]]‐μ‐4,4′‐bipyridyl N,N′‐dioxide‐κ2O:O′] 4,4′‐bipyridyl N,N′‐dioxide solvate] and the erbium(III) and yttrium(III) analogues, {[Ln2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2}n (Ln = Nd, Er and Y), form from [Ln2(bt)6(H2O)4] dimers (bt is but‐2‐enoate) bridged by 4,4′‐bipyridyl dioxide (bno) spacers into sets of parallel chains; these linear arrays are interconnected by aqua‐mediated hydrogen bonds into broad two‐dimensional structures, which in turn interact with each other though the hydrogen‐bonded bridged bno solvent units. Both independent bno units in the structures are bisected by symmetry centres.  相似文献   

5.
The title compounds, bis­(di­methyl­form­amide)‐1κO,3κO‐bis{μ‐2,2′‐[2,2′‐di­methyl­propane‐1,3‐diyl­bis­(nitrilo­methylidyne)]­diphenolato}‐1κ4N,N′,O,O′:2κ2O,O′;2κ2O,O′:3κ4N,N′,O,O′‐di‐μ‐nitrito‐1:2κ2N:O;2:3κ2O:N‐dinickel(II)­cobalt(II), [CoNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (I), ‐copper(II), [CuNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (II), and ‐manganese(II), [MnNi2(NO2)2(C19H22N2O2)2(C3H7NO)2], (III), consist of centrosymmetric linear heterotrinuclear metal complexes. The three complexes are isostructural. There are three bridges across the Ni–M atom pairs (M is Co2+, Cu2+ or Mn2+) in each complex, involving two O atoms of a μ‐N,N′‐bis­(salicyl­idene)‐2,2′di­methyl‐1,3‐propane­diaminate ligand and an N—O moiety of a μ‐nitrito group. The coordination sphere around each metal atom, whether Co2+, Cu2+, Mn2+ or Ni2+, can be described as distorted octahedral. The Ni?M distances are 2.9988 (5) Å in (I), 2.9872 (5) Å in (II) and 3.0624 (8) Å in (III).  相似文献   

6.
Formation thermodynamics of binary and ternary lanthanide(III) (Ln = La, Ce, Nd, Eu, Gd, Dy, Tm, Lu) complexes with 1,10-phenanthroline (phen) and the chloride ion have been studied by titration calorimetry and spectrophotometry in N,N-dimethyl-formamide (DMF) containing 0.2 mol-dm–3 (C2H5)4NClO4 as a constant ionic medium at 25°C. In the binary system with 1,10-phenanthroline, the Ln(phen)3+ complex is formed for all the lanthanide(III) ions examined. The reaction enthalpy and entropy values for the formation of Ln(phen)3+ decrease in the order La > Ce > Nd, then increase in the order Nd < Eu < Gd < Dy, and again decrease in the order Dy > Tm > Lu. The variation is explained in terms of the coordination structure of Ln(phen)3+ that changes from eight to seven coordination with decreasing ionic radius of the metal ion. In the ternary Ln3+-Cl-phen system, the formation of LnCl(phen)2+, LnCl2(phen)+, and LnCl3(phen) was established for cerium(III), neodymium(III), and thulium(III), and their formation constants, enthalpies, and entropies were obtained. The enthalpy and entropy values are also discussed from the structural point of view.  相似文献   

7.
The thermal behaviour of five polynuclear coordination compounds containing tartaric anion as ligand, namely (NH4)3[LnFe(C4O6H4)3(OH)3] (Ln=La and Eu), (NH4)2[PrFe(C4O6H4)3(OH)2] and (NH4)[LnFe(C4O6H4)3(OH)]·3H2O (Ln=Nd and Gd) was investigated. The reaction progress was studied by TG/DTA and FTIR measurements. Oxalates and oxocarbonates were identified as intermediates. In the case of Ln=La, Nd, Pr, Eu and Gd, pure LnFeO3 was obtained as final decomposition product. The thermal decomposition of Eu-Fe compound, leads to a mixture of mixed (ortho-ferrite (EuFeO3) and garnet (Eu3Fe5O12)) and simple oxides (Eu2O3 and α-Fe2O3).  相似文献   

8.
The synthesis of double oxalates of rare earths(III) and potassium with empirical formulae K4Ln2(C2O4)5·10H2O (Ln=La, Ce) and KLn(C2O4)2· nH2O (wheren=4 for Pr-Dy andn=4.5 for Ho-Lu, Y) is described. The compounds obtained were studied by TG, DTG and DTA over the temperature interval 25–500C and by X-ray powder diffraction and chemical analysis. Three structurally different groups were recognized. It was found that either rare earth oxide or basic carbonate (Ln2O2·CO3) and potassium carbonate were obtained as final product at 500C, depending on the rare earth element. The thermal decomposition takes place in two well-resolved stages.  相似文献   

9.
Three isotypic rare earth complexes, catena‐poly[[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐bis(μ‐but‐2‐enoato)‐κ3O,O′:O3O:O,O′‐[aquabis(but‐2‐enoato‐κ2O,O′)yttrium(III)]‐μ‐4,4′‐(ethane‐1,2‐diyl)dipyridine‐κ2N:N′], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4′‐(ethene‐1,2‐diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one‐dimensional coordination polymers made up of centrosymmetric dinuclear [M(but‐2‐enoato)3(H2O)]2 units (M = rare earth), further bridged by centrosymmetric 4,4′‐(ethane‐1,2‐diyl)dipyridine or 4,4′‐(ethene‐1,2‐diyl)dipyridine spacers into sets of chains parallel to the [20] direction. There are intra‐chain and inter‐chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).  相似文献   

10.
Zusammenfassung Auf Grund von pH-Messungen wurden die erste und zweite Dissoziationskonstante der Weinsäure und Dissoziationskonstanten der KomplexionenLnH2 T +,Ln 2H2 T 4+,Ln(H2 T)2-undLnHT bestimmt.
The first and second constant of dissociation of tartaric acid, and the constants of dissociation of the complex ionsLnH2 T +,Ln 2H2 T 4+,Ln(H2 T)2- andLnHT were determined, making use of pH-measurements.


Zugl. 30. Mitt. der Reihe: Koordinationsverbindungen mit organischen Hydroxysäuren.

Ln 3+=La3+, Ce3+.

H4 T=C4H6O6.  相似文献   

11.
Rare earth element 3-methyladipates were prepared as crystalline solids with general formula Ln2(C7H10O4)3nH2O, where n=6 for La, n=4 for Ce,Sm–Lu, n=5 for Pr, Nd and n=5.5 for Y. Their solubilities in water at 293 K were determined (2⋅10–3–1.5⋅10–4 mol dm–3). The IR spectra of the prepared complexes suggest that the carboxylate groups are bidentate chelating. During heating the hydrated 3-methyladipates lose all crystallization water molecules in one (Ce–Lu) or two steps (Y) (except of La(III) complex which undergoes tomonohydrate) and then decompose directly to oxides (Y, Ce) or with intermediate formation of oxocarbonates Ln2O2CO3 (Pr–Tb) or Ln2O(CO3)2 (Gd–Lu). Only La(III) complex decomposes in four steps forming additionally unstable La2(C7H10O4)(CO3)2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Reactions of lanthanide nitrate, oxalate sodium and 2-pyridylmethylphosphonic acid (2-pmpH2) under hydrothermal conditions result in five new lanthanide oxalatophosphonates with two types of structures. Compounds [Ln4(ox)5(2-pmpH)2(H2O)7]·5H2O [Ln3+=Gd (1), Tb (2), Dy (3); ox2−=C2O42−] exhibit a double layer structure, made up of net-like {Ln4(ox)5}n layers containing Ln10(ox)10 rings which are connected by 2-pmpH. While compounds [Ln4(ox)5(2-pmpH)2(H2O)6]·6H2O [Ln3+=Ho (4), Yb (5)] display a three-dimensional framework structure in which the {Ln4(ox)5}n layers are cross-linked by 2-pmpH. The solid state luminescent and magnetic properties are investigated.  相似文献   

13.
The three new isostructural coordination polymers poly[diaqua-(μ2-squarato-O,O′)-(μ2-4,4′-bipyridine-N,N′)Me(II)] hydrate (Me=Fe, Co, Ni) were prepared by hydrothermal reaction. All compounds are isostructural and crystallize in the monoclinic space group P21/c with 4 formula units in the unit cell (a=18.893 (1) Å, b=11.450 (1) Å, c=8.0985 (4) Å, β=93.032 (5)°, V=1749.5 (2) Å3, [Fe(C4O4)(C10H8)(H2O)2]·(H2O)3; a=18.937 (1) Å, b=11.342 (1) Å, c=8.0545 (5) Å, β=91.83 (1)°, V=1725.3 (2) Å3, [Co(C4O4)(C10H8)(H2O)2] · (H2O)3; a=18.271 (1) Å, b=11.340 (1) Å, c=7.8946 (4) Å, β=90.69 (5)°, V=1633.1 (2) Å3, [Ni(C4O4)(C10H8)(H2O)2](H2O)1.7). In the crystal structures the metal atoms are coordinated by two squarate dianions, two 4,4′-bipyridine ligands and two water molecules. The metal atoms are connected via the squarate dianions and the 4,4′-bipyridine ligands into layers, which interpenetrate forming a three-dimensional coordination network. This arrangement yields channels in which additional water molecules are embedded. Thermoanalytic investigations show that upon heating the channel water is removed in the first step and that the water coordinated to the metal atoms is emitted in the second step. Both steps are fully reversible with the former reaction proceeding via a topotactic reaction. The hydration and dehydration of the compounds are accompanied with a continuous change of the color of the materials. The de- and reintercalation processes were investigated using single crystal structure analysis, X-ray powder diffraction, temperature-dependent X-ray powder diffraction, simultaneous differential thermoanalysis and thermogravimetry coupled to mass spectroscopy, differential scanning calorimetry and time-dependent UV-Vis spectroscopy. The results of the investigations are discussed and compared with those for the previously reported manganese compound.  相似文献   

14.
1‐Benzofuran‐2,3‐dicarboxylic acid (C10H6O5) is a dicarboxylic acid ligand which can readily engage in organometallic complexes with various metal ions. This ligand is characterized by an intramolecular hydrogen bond between the two carboxyl residues, and, as a monoanionic species, readily forms supramolecular adducts with different organic and inorganic cations. These are a 1:1 adduct with the dimethylammonium cation, namely dimethylammonium 3‐carboxy‐1‐benzofuran‐2‐carboxylate, C2H8N+·C10H5O5, (I), a 2:1 complex with Cu2+ ions in which four neutral imidazole molecules also coordinate the metal atom, namely bis(3‐carboxy‐1‐benzofuran‐2‐carboxylato‐κO3)tetrakis(1H‐imidazole‐κN3)copper(II), [Cu(C10H5O5)2(C3H4N2)4], (II), and a 4:1 adduct with [La(H2O)7]3+ ions, namely heptaaquabis(3‐carboxy‐1‐benzofuran‐2‐carboxylato‐κO3)lanthanum 3‐carboxy‐1‐benzofuran‐2‐carboxylate 1‐benzofuran‐2,3‐dicarboxylic acid solvate tetrahydrate, [La(C10H5O5)2(H2O)7](C10H5O5)·C10H6O5·4H2O, (III). In the crystal structure, complex (II) resides on inversion centres, while complex (III) resides on axes of twofold rotation. The crystal packing in all three structures reveals π–π stacking interactions between the planar aromatic benzofuran residues, as well as hydrogen bonding between the components. The significance of this study lies in the first crystallographic characterization of the title framework, which consistently exhibits the presence of an intramolecular hydrogen bond and a consequent monoanionic‐only nature. It shows further that the anion can coordinate readily to metal cations as a ligand, as well as acting as a monovalent counter‐ion. Finally, the aromaticity of the flat benzofuran residue provides an additional supramolecular synthon that directs and facilitates the crystal packing of compounds (I)–(III).  相似文献   

15.
The crystal structures of five new transition‐metal complexes synthesized using thiazole‐2‐carboxylic acid (2‐Htza), imidazole‐2‐carboxylic acid (2‐H2ima) or 1,3‐oxazole‐4‐carboxylic acid (4‐Hoxa), namely diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cobalt(II), [Co(C4H2NO2S)2(H2O)2], 1 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)nickel(II), [Ni(C4H2NO2S)2(H2O)2], 2 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cadmium(II), [Cd(C4H2NO2S)2(H2O)2], 3 , diaquabis(1H‐imidazole‐2‐carboxylato‐κ2N3,O)cobalt(II), [Co(C4H2N2O2)2(H2O)2], 4 , and diaquabis(1,3‐oxazole‐4‐carboxylato‐κ2N,O4)cobalt(II), [Co(C4H2NO3)2(H2O)2], 5 , are reported. The influence of the nature of the heteroatom and the position of the carboxyl group in relation to the heteroatom on the self‐assembly process are discussed based upon Hirshfeld surface analysis and used to explain the observed differences in the single‐crystal structures and the supramolecular frameworks and topologies of complexes 1 – 5 .  相似文献   

16.
The synthesis of a series of lanthanide tetracyanoplatinates all incorporating 2,2′:6′,2″-terpyridine (terpy) have been carried out by reaction of Ln3+ nitrate salts with terpy and potassium tetracyanoplatinate. The incorporation of different Ln3+ cations results in the isolation of [Ln(DMF)2(C15H11N3)(H2O)2(NO3)]Pt(CN)4 (Ln=La-Nd, Sm-Yb) under otherwise identical reaction conditions. These compounds have been isolated as single crystals and X-ray diffraction has been used to investigate their structural features. All of the reported compounds are isostructural. Crystallographic data for the representative Eu3+ compound (EuPt) are (MoKα, λ=0.71073 Å): monoclinic, space group P21/c, a=10.1234(4) Å, b=18.7060(7) Å, c=17.1642(5) Å, β=97.249(3)°, V=3224.4(2), Z=4, R(F)=2.78% for 426 parameters with 7724 reflections with I>2σ(I). The structure consists of a zero-dimensional, ionic salt containing complex [Eu(DMF)2(C15H11N3)(H2O)2(NO3)]2+ cations and anions. The complex cations contain the Eu3+ ions in a tri-capped trigonal prismatic coordination environment with one terdentate 2,2′:6′,2″-terpyridine molecule, one bidentate nitrate anion, two O-bound dimethylformamide molecules, and two coordinated water molecules. Photoluminescence data illustrate that EuPt displays intramolecular energy transfer from the coordinated terpy molecule to the Eu3+ cation. The uncoordinated tetracyanoplatinate anion also exhibits visible emission.  相似文献   

17.
The title compounds are obtained in high yield from stoichiometric mixtures of Ln, LnI3 and graphite, heated at 900-950 °C in welded Ta containers. The crystal structures of new Pr and Nd phases determined by single-crystal X-ray diffraction are related to those of other Ln12(C2)3I17-type compounds (C 2/c, a=19.610(1) and 19.574(4) Å, b=12.406(2) and 12.393(3) Å, c=19.062(5) and 19.003(5) Å, β=90.45(3)° and 90.41(3)°, for Pr12(C2)3I17 and Nd12(C2)3I17, respectively). All compounds contain infinite zigzag chains of C2-centered metal atom octahedra condensed by edge-sharing into the [tcc] sequence (c=cis, t=trans) and surrounded by edge-bridging iodine atoms as well as by apical iodine atoms that bridge between chains. The polycrystalline Gd12(C2)3I17 sample exhibits semiconducting thermal behavior which is consistent with an ionic formulation (Ln3+)12(C26-)3(I)17(e) under the assumption that one extra electron is localized in metal-metal bonding. The magnetization measurements on Nd12(C2)3I17, Gd12(C2)3I17 and Dy12(C2)3I17 indicate the coexistence of competing magnetic interactions leading to spin freezing at Tf=5 K for the Gd phase. The Nd and Dy compounds order antiferromagnetically at TN=25 and 29 K, respectively. For Dy12(C2)3I17, a metamagnetic transition is observed at a critical magnetic field H≈25 kOe.  相似文献   

18.
Three new cadmium oxalate coordination polymers, I-III, with extended layered structures have been synthesized in the presence of imidazole. While I was prepared by the reaction between imidazolium oxalate and Cd, II and III were synthesized from their constituents using hydrothermal methods. [Cd(C2O4)(C3N2H4)] (I): monoclinic, space group P21/c (no. 14), a=8.7093(1) Å, b=9.9477(3) Å, c=8.4352 Å, β=93.796(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)] (II): monoclinic, space group P21/c (no. 14), a=7.8614(2) Å, b=14.9332(3) Å, c=15.9153(4) Å β=94.587(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)] (III): monoclinic, space group P21/c (no. 14), a=11.844(2) Å, b=9.066(1) Å, c=18.583(2) Å, β=103.84(2)°, Z=4. While the structure of I is made from CdO5N distorted octahedra linked with oxalate, II and III are built-up from CdO6N, CdO5N2 distorted pentagonal bi-pyramids connected to oxalate units. The framework formulas of II and III are identical and their structures closely related. In all the cases, the networking between the Cd-O/N polyhedra and oxalates give rise to layered architectures with the amine molecules pointing in a direction perpendicular to the layers (in the inter-lamellar region). The difference in the linkages between the oxalates and the Cd atoms in I-III, produces unusual Cd-O-Cd one-dimensional chains, which have been observed for the first time.  相似文献   

19.
The complexes of yttrium and lanthanide with 1,1-cyclobutanedicarboxylic acid of the formula: Ln2(C6H6O4)3nH2O, where n=4 for Y, Pr–Tm, n=5 for Yb,Lu, n=7 for La, Ce have been studied. The solid complexes have colours typical of Ln3+ ions. During heating in air they lose water molecules and then decompose to the oxides, directly (Y, Ce, Tm, Yb) or with intermediate formation. The thermal decomposition is connected with released water (313–353 K), carbon dioxide, hydrocarbons(538–598 K) and carbon oxide for Ho and Lu. When heated in nitrogen they dehydrate to form anhydrous salt and next decompose to the mixture of carbon and oxides of respective metals. IR spectra of the prepared complexes suggest that the carboxylate groups are bidentate chelating. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The imidazole covalently coordinated sandwich‐type heteropolytungstates Na9[{Na(H2O)2}3{M(C3H4N2)}3‐ (SbW9O33)2xH2O (M=NiII, x=32; M=CoII, x=32; M=ZnII, x=33; M=MnII, x=34) were obtained by the reaction of Na2WO4·2H2O, SbCl3·6H2O, NiCl2·6H2O [MnSO4·H2O, Co(NO3)2·6H2O, ZnSO4·7H2O] and imidazole at pH≈7.5. The structure of Na9[{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2]·32H2O was determined by single crystal X‐ray diffraction. Polyanion [{Na(H2O)2}3{Ni(C3H4N2)}3(SbW9O33)2}3]9? has approximate C3v symmetry, imidazole coordinated six‐nuclear cluster [{Na(H2O)2}3{Ni(C3H4N2)}3]9+ is encapsulated between two (α‐SbW9O33)9?, the three rings of imidazole in the polyanion are perpendicular to the horizontal plane formed by six metals (Na‐Ni‐Na‐Ni‐Na‐Ni) in the central belt, and π‐stacking interactions exist between imidazoles of neighboring polyanions with dihedral angel of 60°. The compounds were also characterized by IR, UV‐Vis spectra, TG and DSC, and the thermal decomposition mechanism of the four compounds was suggested by TG curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号