首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the synthesis and characterization of a series of single-wall carbon nanotubes (SWNTs) functionalized with polyamidoamine dendrimers. Importantly, the dendrimers are linked directly to the SWNT surface using a divergent methodology. This approach allows the number of functional groups on the nanotubes to be increased without provoking significant damage to the conjugated pi-system of the SWNTs. Several tetraphenylporphyrin moieties can be linked to the periphery of the dendrimers, and the photophysical properties of the resulting nanoconjugates have been investigated with a series of steady-state and time-resolved spectroscopy. The fluorescence kinetics provide evidence for two transient decays, one very short-lived (i.e., 0.04 +/- 0.01 ns) and one long-lived (i.e., 8.6 +/- 1.2 ns). A possible explanation is that some porphyrin units do not interact with the nanotubes, thus exhibiting a fluorescence lifetime similar to that of the free porphyrin. Complementary transient absorption measurements not only corroborate the fast decay of the photoexcited tetraphenylporphyrin but also confirm that intraconjugate charge separation evolves from the excited porphyrin to the SWNTs.  相似文献   

2.
Hydroboration of three allotropes of carbon, i.e., diamond (100) surface, [60]fullerene, and single-wall carbon nanotubes (SWNTs), with borane (BH(3)) has been explored by means of quantum chemical calculations. The calculations predicted that the hydroboration of C(60) and the C(100)-2x1 surface occurs readily, whereas the hydroboration of the sidewall of an armchair (5,5) SWNT is thermoneutral with a barrier height of 11.5 kcal/mol. This suggests that sidewall hydroboration, if viable, would be highly reversible on the (5,5) SWNT. The as-hydroborated carbonous materials can be good starting points for further chemical modification and manipulation of these carbonous materials, given the abundant chemistry of organoboranes.  相似文献   

3.
In the present work, a new family of pyrene (Py)-substituted phthalocyanines (Pcs), i.e., ZnPc-Py and H(2)Pc-Py, were designed, synthesized, and probed in light of their spectroscopic properties as well as their interactions with single-wall carbon nanotubes (SWNTs). The pyrene units provide the means for non-covalent functionalization of SWNTs via π-π interactions. Such a versatile approach ensures that the electronic properties of SWNTs are not impacted by the chemical modification of the carbon skeleton. The characterization of ZnPc-Py/SWNT and H(2)Pc-Py/SWNT has been performed in suspension and in thin films by means of different spectroscopic and photoelectrochemical techniques. Transient absorption experiments reveal photoinduced electron transfer between the photoactive components. ZnPc-Py/SWNT and H(2)Pc-Py/SWNT have been integrated into photoactive electrodes, revealing stable and reproducible photocurrents with monochromatic internal photoconversion efficiency values for H(2)Pc-Py/SWNT as large as 15 and 23% without and with an applied bias of +0.1 V.  相似文献   

4.
A methodology that takes into account the (n,m) structure of single-walled carbon nanotubes (SWNTs), through an exciton-exciton resonance model and an electron-phonon interaction model, was employed in order to evaluate the semiconducting (n,m) abundance of two SWNT samples (i.e., Co-MCM-41 and HiPco). This was based on photoluminescence and near-infrared absorption data obtained on aqueous suspensions of individually dispersed SWNTs. In the absence of known (n,m) abundance SWNT samples, we resorted to determining the diameter distribution curves for both samples, which were found to obey an unsymmetrical log-normal distribution, typical for vapor-phase particle growth. Using this log-normal function, we reconstructed the near-infrared E S11 absorption spectrum of the narrow diameter distribution Co-MCM-41 SWNT sample, which in turn enabled us to assess the predictions of these two theoretical models. High spectral reconstruction accuracy was obtained from the electron-phonon interaction model when considering (11,0) and (10,0) zigzag nanotubes, along with (n,m) line widths inversely proportional to their extinction coefficients.  相似文献   

5.
The microstructure and absorption/desorption characteristics of composite MgH2 and 5 wt % as-prepared single-walled carbon nanotubes (MgH2-5ap) obtained by the mechanical grinding method were investigated. Experimental results show that the MgH2-5ap sample exhibits faster absorption kinetics and relatively lower desorption temperature than pure MgH2 or MgH2-purified single-walled carbon nanotube composite. Storage capacities of 6.0 and 4.2 wt % hydrogen for the MgH2-5ap composite were achieved in 60 min at 423 and 373 K, respectively. Furthermore, its desorption temperature was reduced by 70 K due to the introduction of as-prepared single-walled carbon nanotubes (SWNTs). In addition, the different effects of SWNTs and metallic catalysts contained in the as-prepared SWNTs were also investigated and a hydrogenation mechanism was proposed. It is suggested that metallic particles may be mainly responsible for the improvement of the hydrogen absorption kinetics, and SWNTs for the enhancement of hydrogen absorption capacity of MgH2.  相似文献   

6.
High-quality single-wall carbon nanotubes (SWNTs) with narrow diameter distribution have been grown on Fe/Co-loaded MCM41 by using acetylene as the carbon source within a short reaction period, typically 10 min or less. The optimum temperature for SWNTs synthesis is 850 degrees C. Longer reaction time (i.e., 30 min) favors the formation of multiwall carbon nanotubes (MWNTs) and graphitic carbon. When the reaction time is reduced to less than 10 min, formation of MWNTs and graphitic carbon is greatly suppressed, and high-quality SWNTs dominates the yield. The surface of the as-grown SWNTs is found to be free from amorphous carbon, as observed from high-resolution transmission electron microscope (HRTEM) analysis. Raman spectral data show a G/D ratio above 10, indicating that the as-grown SWNTs have very few defects. Furthermore, radial breathing mode (RBM) analysis reveals that the diameter distribution of the current SWNTs is narrow and ranges from 0.64 to 1.36 nm.  相似文献   

7.
中分子毒素在碳纳米管上的吸附   总被引:4,自引:0,他引:4  
研究了两种不同形态的碳纳米管(随机生长多壁碳纳米管(MWCNTs)及定向生长多壁碳纳米管(ACNTs))对典型中分子毒素的吸附性能. 并与两种现有商用血液灌流吸附材料(活性炭(AC)及大孔吸附树脂(MR))进行了对比. 结果显示, 碳纳米管(CNTs)具有优异的中分子吸附能力, 其中MWCNTs对典型中分子毒素的吸附量可达47.18 mg·g-1, 为活性炭的10.8倍, 为大孔吸附树脂的5.5倍. 此外, 碳纳米管的吸附非常迅速, 中分子毒素在MWCNTs及ACNTs达到吸附平衡的时间仅为10 min和15 min, 而活性炭及大孔吸附树脂则分别需要60 min及120 min. 碳纳米管优异的吸附性能得益于其独特的微观结构所形成的发达的中孔. 因此, 碳纳米管可望成为高效的吸附材料, 应用于血液灌流中.  相似文献   

8.
卟啉和酞菁修饰的单壁碳纳米管的合成及光谱性质   总被引:1,自引:0,他引:1  
利用5-(4-氨基苯基)-10,15,20-三(3,5-二辛氧基苯基)卟啉和2,9,16-三叔丁基-23-氨基锌(Ⅱ)酞菁通过酰胺键连接方式同时对单壁碳纳米管进行共价修饰, 通过红外光谱、拉曼光谱、X射线光电子能谱和透射电镜对所得碳纳米管复合物进行了表征, 证实了其结构. 紫外-可见吸收光谱和荧光光谱分析表明, 光活性分子卟啉和酞菁均与单壁碳纳米管之间存在较强的电子效应. 经卟啉和酞菁共同修饰的单壁碳纳米管复合物比卟啉和酞菁单独修饰的碳纳米管复合物的吸光范围更宽, 而且分散性较好(309 mg/L), 是潜在的光电转换材料.  相似文献   

9.
Single‐walled carbon nanotubes (SWNTs) synthesized with different methods are investigated by using multiple characterization techniques, including Raman scattering, optical absorption, and X‐ray absorption near edge structure, along with X‐ray photoemission by following the total valence bands and C 1s core‐level spectra. Four different SWNT materials (produced by arc discharge, HiPco, laser ablation, and CoMoCat methods) contain nanotubes with diameters ranging from 0.7 to 2.8 nm. The diameter distribution and the composition of metallic and semiconducting tubes of the SWNT materials are strongly affected by the synthesis method. Similar sp2 hybridization of carbon in the oxygenated SWNT structure can be found, but different surface functionalities are introduced while the tubes are processed. All the SWNTs demonstrate stronger plasmon resonance excitations and lower electron binding energy than graphite and multiwalled carbon nanotubes. These SWNT materials also exhibit different valence‐band X‐ray photoemission features, which are considerably affected by the nanotube diameter distribution and metallic/semiconducting composition.  相似文献   

10.
We describe the functionalization of single-wall carbon nanotubes (SWNTs) with 4-(2-trimethylsilyl)ethynylaniline and the subsequent attachment of a zinc-phthalocyanine (ZnPc) derivative using the reliable Huisgen 1,3-dipolar cycloaddition. The motivation of this study was the preparation of a nanotube-based platform which allows the facile fabrication of more complex functional nanometer-scale structures, such as a SWNT-ZnPc hybrid. The nanotube derivatives described here were fully characterized by a combination of analytical techniques such as Raman, absorption and emission spectroscopy, atomic force and scanning electron microscopy (AFM and SEM), and thermogravimetric analysis (TGA). The SWNT-ZnPc nanoconjugate was also investigated with a series of steady-state and time-resolved spectroscopy experiments, and a photoinduced communication between the two photoactive components (i.e., SWNT and ZnPc) was identified. Such beneficial features lead to monochromatic internal photoconversion efficiencies of 17.3% when the SWNT-ZnPc hybrid material was tested as photoactive material in an ITO photoanode.  相似文献   

11.
Single-walled carbon nanotubes (SWNTs) are typically long (greater than or approximately equal 100 nm) and have been well established as novel quasi one-dimensional systems with interesting electrical, mechanical, and optical properties. Here, quasi zero-dimensional SWNTs with finite lengths down to the molecular scale (7.5 nm in average) were obtained by length separation using a density gradient ultracentrifugation method. Different sedimentation rates of nanotubes with different lengths in a density gradient were taken advantage of to sort SWNTs according to length. Optical experiments on the SWNT fractions revealed that the UV-vis-NIR absorption and photoluminescence peaks of the ultrashort SWNTs blue-shift up to approximately 30 meV compared to long nanotubes, owing to quantum confinement effects along the length of ultrashort SWNTs. These nanotube capsules essentially correspond to SWNT quantum dots.  相似文献   

12.
Single-walled carbon nanotubes (SWNTs) were determined to have significant interaction with poly(3-hexylthiophene) (P3HT), which is helpful to form continuous active film with interpenetrating structure and improve the crystallinity of the resultant film for SWNTs/P3HT composite. Photovoltaic devices based on an active film with relatively higher crystallinity display much enhanced performance. The work function of carbon nanotubes modulated by electron transferring from P3HT to SWNTs is proposed to explain the high open-circuit voltage (V(OC)) obtained from the photovoltaic devices based on the SWNTs/P3HT system.  相似文献   

13.
Creation of higher-ordered polymeric architectures composed of alternative assemblies of single-walled carbon nanotubes (SWNTs) and fibrous porphyrin J-aggregates can be easily achieved utilizing the cationic semi-artificial polysaccharide which can act not only as a tubular host for SWNTs but also as a one-dimensional template for porphyrin molecules. This new class of hierarchical polymer assembly is formed, for the first time, by the mutual template effect of two components, i.e., the cationic SWNT complexes and the anionic porphyrin supramolecular nanofibers. In the present system, the self-assembling behaviors of the SWNT complexes as well as the final properties of the SWNT nanoarchitectures are strongly affected by the packing mode of porphyrin molecules on the cationic semi-artificial polysaccharide. Furthermore, we have confirmed that the light energy captured by the porphyrin J-aggregates is effectively transferred to SWNTs.  相似文献   

14.
Carbon nanotubes show promising prospects for applications ranging from molecular electronics to ultrasensitive biosensors. An important aspect to understanding carbon nanotube properties is their interactions with biomolecules such as peptides and proteins, as these interactions are important in our understanding of nanotube interactions with the environment, their use in cellular systems, as well as their interface with biological materials for medical and diagnostic applications. Here we report the sequence and conformational requirements of peptides for high-affinity binding to single-walled carbon nanotubes (SWNTs). A new motif, X(1)THX(2)X(3)PWTX(4), where X(1) is G or H, X(2) is H or D or null, X(3) is null or R, and X4 is null or K, was identified from two classes of phage-displayed peptide libraries. The high affinity binding of the motif to SWNTs required constrained conformations which were achieved through either the extension of the amino acid sequence (e.g., LLADTTHHRPWT) or the addition of a constrained disulfide bond (e.g., CGHPWTKC). This motif shows specific high-affinity to the currently studied SWNTs, compared to previously reported peptides. The conformations of the identified peptides in complex with SWNTs were also characterized with a variety of biophysical methodologies including CD, fluorescence, NMR spectroscopy, and molecular modeling.  相似文献   

15.
A derivatized porphyrin with long alkyl chains, 5,10,15,20-tetrakis(hexadecyloxyphenyl)-21H,23H-porphine, is selective toward semiconducting single-walled carbon nanotubes (SWNTs) in presumably noncovalent interactions, resulting in significantly enriched semiconducting SWNTs in the solubilized sample and predominantly metallic SWNTs in the residual solid sample according to Raman, near-IR absorption, and bulk conductivity characterizations.  相似文献   

16.
We report the efficient aqueous dispersion of pristine HiPco single-walled carbon nanotubes (SWNTs) with ionic liquid (IL)-based surfactants 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mercaptododecyl)-3-methylimidazolium bromide (2), the thiolation of nanotube sidewalls with 2, and the controlled self-assembly of positively charged SWNT-1,2 composites on gold. Optical absorption spectra and resonance Raman (RR) data of obtained aqueous SWNT-1,2 dispersions are consistent with debundled and noncovalently functionalized nanotubes whose electronic properties have not been disturbed. Additionally, the dispersion of pristine nanotube material with surfactants 1 and 2 leads to a high degree of purification from carbonaceous particles. The chiralities of the 14 smallest semiconducting HiPco SWNTs in resonance with Raman excitation at 1064 nm (1.165 eV) were determined in SWNT-2 aqueous dispersion using UV-vis-NIR and RR spectra. X-ray photoelectron spectroscopy (XPS) and surface-enhanced resonance Raman scattering (SERRS) spectroscopy of SWNT-2 submonolayers on gold verified the encapsulation of individualized SWNTs with IL surfactants, the cleavage of S-S disulfide bonds formed in aqueous SWNT-2 suspensions, and the direct chemisorption of the SWNT-2 composite on bare gold via the Au-S bond. Aqueous dispersions of SWNTs with IL-based surfactants add biofunctionality to carbon nanotubes by imparting the positive surface charge necessary for interactions with cell membranes. Our technique, which purifies pristine nanotube material and produces water-soluble, positively charged nanotubes with pendent surface-active thiol groups, may also be translated to other carbon nanotubes and carbon nanostructures. Self-assembled, positively charged submonolayers of SWNTs can be further used for applications in cell biology and sensor technology.  相似文献   

17.
Peptides selected from phage-displayed libraries have been found to exhibit high-affinity binding to carbon nanotubes including single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes, and single-walled carbon nanohorns. One unique feature of these peptides is that their amino acid sequences are rich in tryptophan and histidine residues. The aim of this study was to investigate the importance of the tryptophan residue in a newly identified SWNT-binding peptide, UW-1, which contains the motif, XTHXXPWTX, where X is any amino acid. Tryptophan was altered in the following ways: mutation to alanine or substitution with three unnatural tryptophan analogues, i.e., 5-fluorotryptophan, 5-hydroxytryptophan, and 7-azatryptophan. Analysis of experimental and computational data suggests that the highest occupied molecular orbital of the tryptophan residue in the peptide interacts with the lowest unoccupied molecular orbital from the SWNT. This information should be important in permitting modulation of peptide affinities to these nanomaterials.  相似文献   

18.
There is increasing interest in developing single-walled carbon nanotubes (SWNTs)-based optical biosensors for remote or in vitro and in vivo sensing because the near-IR optical properties of SWNTs are very sensitive to surrounding environmental changes. Many enzyme-catalyzed reactions yield hydrogen peroxide (H(2)O(2)) as a product. To our knowledge, there is no report on the interaction of H(2)O(2) with SWNTs from the optical sensing point of view. Here, we study the reaction of H(2)O(2) with an aqueous suspension of water-soluble (ws) HiPco SWNTs encased in the surfactant sodium dodecyl sulfate (SDS). The SWNTs are optically sensitive to hydrogen peroxide in pH 6.0 buffer solutions through suppression of the near-IR absorption band intensity. Interestingly, the suppressed spectral intensity of the nanotubes recovers by increasing the pH, by decomposing the H(2)O(2) into H(2)O and O(2) with the enzyme catalase, and by dialytically removing H(2)O(2). Preliminary studies on the mechanisms suggest that H(2)O(2) withdraws electrons from the SWNT valence band by charge transfer, which suppresses the nanotube spectral intensity. The findings suggest possible enzyme-assisted molecular recognition applications by selective optical detection of biological species whose enzyme-catalyzed products include hydrogen peroxide.  相似文献   

19.
Jin G  Huang F  Li W  Yu S  Zhang S  Kong J 《Talanta》2008,74(4):815-820
A poly-ABSA/SWNTs composite-modified electrode was fabricated by electropolymerizing aminobenzene sulphonic acid (ABSA) on the surface of glassy carbon electrode (GCE) modified with single-wall carbon nanotubes (SWNTs). SWNTs provide a 3D porous and conductive network for the polymer immobilization. The nanocomposite film was characterized by scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS). The results indicated that this composite-modified electrode had strong electrocatalytic activity toward the oxidation of trifluoperazine (TFP). TFP could effectively accumulate on the modified electrode and generate a sensitive anodic peak at 0.72V (versus SCE) in pH 6.1 phosphate buffer solution. Under the selected conditions, the anodic peak current of TFP was linear with its concentration within the range from 1.0x10(-7) to 1.0x10(-5)molL(-1) and 1.0x10(-5) to 1.0x10(-4)molL(-1), and the detection limit was 1.0x10(-9)molL(-1) (S/N=3). This method was successfully applied to the detection of trifluoperazine in drug samples and the recovery was satisfactory. In comparison with the SWNTs/GCE or poly-ABSA/GCE prepared in the similar way, this composite-modified electrode exhibited better catalytic activity.  相似文献   

20.
While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号