首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angular momentum orientation has been observed in the OH(X(2)Π, v = 0) fragments generated by circularly polarized photodissociation of H(2)O(2) at 193 nm and 248 nm. The magnitude and sign of the orientation are strongly dependent on the OH(X) photofragment rotational state. In addition to conventional laser induced fluorescence methods, Zeeman quantum beat spectroscopy has also been used as a complementary tool to probe the angular momentum orientation parameters. The measured orientation at 193 nm is attributed solely to photodissociation via the ?(1)A state, even though at this wavelength H(2)O(2) is excited near equally to both the ?(1)A and B(1)B electronic states. This observation is confirmed by measurements of the photofragment orientation at 248 nm, where access to the ?(1)A state dominates. Several possible mechanisms are discussed to explain the observed photofragment orientation, and a simple physical model is developed, which includes the effects of the polarization of the parent molecular rotation upon absorption of circularly polarized light. Good agreement between the experimental and simulation results is obtained, lending support to the validity of the model. It is proposed that photofragment orientation arises mainly from the coupling of the parent rotational angular momentum with that induced during photofragmentation.  相似文献   

2.
Polarized laser photolysis, coupled with resonantly enhanced multiphoton ionization detection of O(1D2) and velocity-map ion imaging, has been used to investigate the photodissociation dynamics of ozone at 193 nm. The use of multiple pump and probe laser polarization geometries and probe transitions has enabled a comprehensive characterization of the angular momentum polarization of the O(1D2) photofragments, in addition to providing high-resolution information about their speed and angular distributions. Images obtained at the probe laser wavelength of around 205 nm indicate dissociation primarily via the Hartley band, involving absorption to, and diabatic dissociation on, the B 1B2(3 1A1) potential energy surface. Rather different O(1D2) speed and electronic angular momentum spatial distributions are observed at 193 nm, suggesting that the dominant excitation at these photon energies is to a state of different symmetry from that giving rise to the Hartley band and also indicating the participation of at least one other state in the dissociation process. Evidence for a contribution from absorption into the tail of the Hartley band at 193 nm is also presented. A particularly surprising result is the observation of nonzero, albeit small values for all three rank K = 1 orientation moments of the angular momentum distribution. The polarization results obtained at 193 and 205 nm, together with those observed previously at longer wavelengths, are interpreted using an analysis of the long range quadrupole-quadrupole interaction between the O(1D2) and O2(1Deltag) species.  相似文献   

3.
In the following paper we present translational anisotropy and angular momentum polarization data for O((3)P(1)) and O((3)P(2)) products of the photodissociation of molecular oxygen at 193 nm. The data were obtained using polarized laser photodissociation coupled with resonantly enhanced multiphoton ionization and velocity-map ion imaging. Under the jet-cooled conditions employed, absorption is believed to be dominated by excitation into the Herzberg continuum. The experimental data are compared with previous experiments and theoretical calculations at this and other wavelengths. Semi-classical calculations performed by Groenenboom and van Vroonhoven [J. Chem. Phys, 2002, 116, 1965] are used to estimate the alignment parameters arising from incoherent excitation and dissociation and these are shown to agree qualitatively well with the available experimental data. Following the work of Alexander et al. [J. Chem. Phys, 2003, 118, 10566], orientation and alignment parameters arising from coherent excitation and dissociation are modelled more approximately by estimating phase differences generated subsequent to dissociation via competing adiabatic pathways leading to the same asymptotic products. These calculations lend support to the view that large values of the coherent alignment moments, but small values of the corresponding orientation moments, could arise from coherent excitation of (and subsequent dissociation via) parallel and perpendicular components of the Herzberg I, II and III transitions.  相似文献   

4.
Dissociative recombination (DR) of the dimer ion (NO)(2) (+) has been studied at the heavy-ion storage ring CRYRING at the Manne Siegbahn Laboratory, Stockholm. The experiments were aimed at determining details on the strongly enhanced thermal rate coefficient for the dimer, interpreting the dissociation dynamics of the dimer ion, and studying the degree of similarity to the behavior in the monomer. The DR rate reveals that the very large efficiency of the dimer rate with respect to the monomer is limited to electron energies below 0.2 eV. The fragmentation products reveal that the breakup into the three-body channel NO+O+N dominates with a probability of 0.69+/-0.02. The second most important channel yields NO+NO fragments with a probability of 0.23+/-0.03. Furthermore, the dominant three-body breakup yields electronic and vibrational ground-state products, NO(upsilon=0)+N((4)S)+O((3)P), in about 45% of the cases. The internal product-state distribution of the NO fragment shows a similarity with the product-state distribution as predicted by the Franck-Condon overlap between a NO moiety of the dimer ion and a free NO. The dissociation dynamics seem to be independent of the NO internal energy. Finally, the dissociation dynamics reveal a correlation between the kinetic energy of the NO fragment and the degree of conservation of linear momentum between the O and N product atoms. The observations support a mechanism in which the recoil takes place along one of the NO bonds in the dimer.  相似文献   

5.
Speed distributions, and spatial anisotropy and atomic angular momentum polarization parameters have been determined for the O((3)P(J)) products following the photodissociation of ozone at 248 and 226 nm using velocity map ion imaging. The data have been interpreted in terms of two dissociation mechanisms that give rise to fast and slow products. In both cases, excitation is believed to occur to the B state. Consistent with previous interpretations, the speed distributions, translational anisotropy parameters, and angular momentum polarization moments support the assignment of the major pathway to curve crossing from the B to the repulsive R surface, generating fast fragments in a wide range of vibrational states. For the slow fragments, it is proposed that following excitation to the B state, the system crosses onto the A state. The crossing seam is only accessible to molecules that are highly vibrationally excited and therefore possess modest recoil speeds. Once on the A state, the wavepacket is thought to funnel through a conical intersection to the ground state. The velocity distributions, spatial anisotropy parameters, spin-orbit populations and polarization data each lend support to this mechanism.  相似文献   

6.
The translational anisotropy and the polarization of the electronic angular momentum of the O ((1)D2) fragment produced from the 298 nm photodissociation of ozone have been determined using resonance enhanced multiphoton ionization (REMPI) in conjunction with time-of-flight mass spectrometry (TOFMS). The translational anisotropy parameter beta, which is necessarily averaged over the O2 co-fragment rotational distribution, is measured to be 1.08 +/- 0.04. This is consistent with that expected for the (1)B2 <-- (1)A1 transition within an impulsive model if the tangential velocity associated with the zero point motion of the bend is constricted to opening the bond angle. Molecular frame polarization parameters of rank up to k = 4 have been extracted for the O ((1)D2) fragment and the calculated m(J) populations show a strong preference for the absolute value(m(J)) = 1 states. A small coherence term is also observed, a manifestation of the nuclear geometry of the dissociating molecule and the existence of possible non-adiabatic processes in the exit channel. The orientation associated with the mapping of the photon helicity onto the O ((1)D2) electronic angular momentum distribution was observed to have been quenched. However, the parameter gamma1', which describes the contribution to the orientation from a coherent superposition of a parallel and perpendicular excitation where the photofragment angular momentum lies perpendicular to both the recoil velocity and to the transition dipole moment, was determined to be -0.06.  相似文献   

7.
The photodissociation of NO(3) has been studied using velocity map ion imaging. Measurements of the NO(2) + O channel reveal statistical branching ratios of the O((3)P(J)) fine-structure states, isotropic angular distributions, and low product translational energy consistent with barrierless dissociation along the ground state potential surface. There is clear evidence for two distinct pathways to the formation of NO + O(2) products. The dominant pathway (>70% yield) is characterized by vibrationally excited O(2)((3)Σ(g)(-), v = 5-10) and rotationally cold NO((2)Π), while the second pathway is characterized by O(2)((3)Σ(g)(-), v = 0-4) and rotationally hotter NO((2)Π) fragments. We speculate the first pathway has many similarities to the "roaming" dynamics recently implicated in several systems. The rotational angular momentum of the molecular fragments is positively correlated for this channel, suggesting geometric constraints in the dissociation. The second pathway results in almost exclusive formation of NO((2)Π, v = 0). Although product state correlations support dissociation via an as yet unidentified three-center transition state, theoretical confirmation is needed.  相似文献   

8.
The time-slice velocity-map ion imaging and the resonant four-wave mixing techniques are combined to study the photodissociation of NO in the vacuum ultraviolet (VUV) region around 13.5 eV above the ionization potential. The neutral atoms, i.e., N((2)D(o)), O((3)P(2)), O((3)P(1)), O((3)P(0)), and O((1)D(2)), are probed by exciting an autoionization line of O((1)D(2)) or N((2)D(o)), or an intermediate Rydberg state of O((3)P(0,1,2)). Old and new autoionization lines of O((1)D(2)) and N((2)D(o)) in this region have been measured and newer frequencies are given for them. The photodissociation channels producing N((2)D(o)) + O((3)P), N((2)D(o)) + O((1)D(2)), N((2)D(o)) + O((1)S(0)), and N((2)P(o)) + O((3)P) have all been identified. This is the first time that a single VUV photon has been used to study the photodissociation of NO in this energy region. Our measurements of the angular distributions show that the recoil anisotropy parameters (β) for all the dissociation channels except for the N((2)D(o)) + O((1)S(0)) channel are minus at each of the wavelengths used in the present study. Thus direct excitation of NO by a single VUV photon in this energy region leads to excitation of states with Σ or Δ symmetry (ΔΩ = ±1), explaining the observed perpendicular transition.  相似文献   

9.
由Nd:YAG激光器三倍频, 输出波长为λ=355 nm(28 169 cm-1)的激光光解NO2分子产生的氧原子, 通过共振增强多光子电离(REMPI, resonance enhanced multiphoto ionization)及飞行时间(TOF, time of flight)质谱技术, 获得了自旋-轨道精细能级分辨的氧原子O(2p 3PJ″=2, 1, 0)离子谱.氧离子信号强度与UV电离激光能量(λ≈226 nm)之间的关系能用三次方曲线很好拟合, 它表明光解产物氧原子是通过(2+1)多光子吸收过程而被电离的.由离子信号得到的氧原子基态三个自旋-轨道支能级布居比f1=I(3P1)/I(3P2)与f0=I(3P0)/I(3P2)分别为0.54±0.09和0.20±0.04, 并且在不同的光解激光能量下其布居比保持不变.这一比值与统计分布计算的值为0.6和0.2一致(即统计分布3P2∶3P1∶3P0=1:0.6:0.2).这是由于样品(NO2)在较低的压力下(1.33×10-4 Pa)和极短的光解-电离时间范围内(10-8 s), 产物O(3PJ″)支能级间几乎不可能发生碰撞能量转移, 因此, 氧原子三个自旋-轨道角动量分裂能级布居O(3PJ″=2, 1, 0)是统计分布的.  相似文献   

10.
The photodissociation dynamics of CH(2)Br(2) was investigated near 234 and 267 nm. A two-dimensional photofragment ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton (REMPI) ionization scheme was utilized to obtain the angular and translational energy distributions of the nascent Br ((2)P(3/2)) and Br* ((2)P(1/2)) atoms. The obtained translational energy distributions of Br and Br* are found consist of two components which should be come from the radical channel and secondary dissociation process, respectively. It is suggested that the symmetry reduction from C(2v) to C(s) during photodissociation invokes a non-adiabatic coupling between the 2B(1) and A(1) states. Consequently, the higher internal energy distribution of Br channel than Br* formation channel and the broader translational energy distribution of the former are presumed correlate with a variety of vibrational excitation disposal at the crossing point resulting from the larger non-adiabatic crossing from 2B(1) to A(1) state than the reverse crossing. Moreover, the measured anisotropy parameter beta indicate that fragments recoil along the Br-Br direction mostly in the photodissociation.  相似文献   

11.
We report an imaging study of nitric acid (HNO(3)) photodissociation near 204 nm with detection of O((1)D), one of the major decomposition products in this region. The images show structure reflecting the vibrational distribution of the HONO coproduct and significant angular anisotropy that varies with recoil speed. The images also show substantial alignment of the O((1)D) orbital, which is analyzed using an approximate treatment that reveals that the polarization is dominated by incoherent, high order contributions. The results offer additional insight into the dynamics of the dissociation of nitric acid through the S(3) (2 (1)A(')) excited state, resolving an inconsistency in previously reported angular distributions, and pointing the way to future studies of the angular momentum polarization.  相似文献   

12.
The dissociation of OCS has been investigated subsequent to excitation at 248 nm using velocity map ion imaging. Speed distributions, speed dependent translational anisotropy parameters, and the atomic angular momentum orientation and alignment are reported for the channel leading to S((3)P(J)). The speed distributions and beta parameters are in broad agreement with previous work and show behavior that is highly sensitive to the S-atom spin-orbit state. The data are shown to be consistent with the operation of at least two triplet production mechanisms. Interpretation of the angular momentum polarization data in terms of an adiabatic picture has been used to help identify a likely dissociation pathway for the majority of the S((3)P(J)) products, which strongly favors production of J=2 fragment atoms, correlated, it is proposed, with rotationally hot and vibrationally cold CO cofragments. For these fragments, optical excitation to the 2 (1)A(') surface is thought to constitute the first step, as for the singlet dissociation channel. This is followed by crossing, via a conical intersection, to the ground 1 (1)A(') state, from where intersystem crossing occurs, populating the 1 (3)A(')1 (3)A(")((3)Pi) states. The proposed mechanism provides a qualitative rationale for the observed spin-orbit populations, as well as the S((3)P(J)) quantum yield and angular momentum polarization. At least one other production mechanism, leading to a more statistical S-atom spin-orbit state distribution and rotationally cold, vibrationally hot CO cofragments, is thought to involve direct excitation to either the (3)Sigma(-) or (3)Pi states.  相似文献   

13.
The photodissociation dynamics of allyl chloride at 235 nm producing atomic Cl((2)P(J);J=1/2,3/2) fragments is investigated using a two-dimensional photofragment velocity ion imaging technique. Detection of the Cl((2)P(1/2)) and Cl((2)P(3/2)) products by [2+1] resonance enhanced multiphoton ionization shows that primary C-Cl bond fission of allyl chloride generates 66.8% Cl((2)P(3/2)) and 33.2% Cl((2)P(1/2)). The Cl((2)P(3/2)) fragments evidenced a bimodal translational energy distribution with a relative weight of low kinetic energy Cl((2)P(3/2))/high kinetic energy Cl((2)P(3/2)) of 0.097/0.903. The minor dissociation channel for C-Cl bond fission, producing low kinetic energy chlorine atoms, formed only chlorine atoms in the Cl((2)P(3/2)) spin-orbit state. The dominant C-Cl bond fission channel, attributed to an electronic predissociation that results in high kinetic energy Cl atoms, produced both Cl((2)P(1/2)) and Cl((2)P(3/2)) atomic fragments. The relative branching for this dissociation channel is Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))]=35.5%. The average fraction of available energy imparted into product recoil for the high kinetic energy products was found to be 59%, in qualitative agreement with that predicted by a rigid radical impulsive model. Both the spin-orbit ground and excited chlorine atom angular distributions were close to isotropic. We compare the observed Cl((2)P(1/2))/[Cl((2)P(1/2))+Cl((2)P(3/2))] ratio produced in the electronic predissociation channel of allyl chloride with a prior study of the chlorine atom spin-orbit states produced from HCl photodissociation, concluding that angular momentum recoupling in the exit channel at long interatomic distance determines the chlorine atom spin-orbit branching.  相似文献   

14.
The photodissociation of N(2)O at wavelengths near 130 nm has been investigated by velocity-mapped product imaging. In all, five dissociation channels have been detected, leading to the following products: O((1)S)+N(2)(X (1)Sigma), N((2)D)+NO(X (2)Pi), N((2)P)+NO(X (2)Pi), O((3)P) + N(2)(A (3)Sigma(+) (u)), and O((3)P) + N(2)(B (3)Pi(g)). The most significant channel is to the products O((1)S) + N(2)(X(1)Sigma), with strong vibrational excitation in the N(2). The O((3)P) + N(2)(A,B):N((2)D,(2)P) + NO branching ratio is measured to be 1.4 +/- 0.5, while the N(2)(A) + O((3)P(J)):N(2)(B) + O((3)P(J)) branching ratio is determined to be 0.84+/-0.09. The spin-orbit distributions for the O((3)P(J)), N((2)P(J)), and N((2)D(J)) products were also determined. The angular distributions of the products are in qualitative agreement with excitation to the N(2)O(D (1)Sigma(+)) state, with participation as well by the (3)Pi(v) state.  相似文献   

15.
Velocity-map ion imaging (VMI) has been used to study the angular distribution of the NO fragment generated in the photodissociation of NO(2) at a variety of photolysis wavelengths. Images were recorded for the channels NO (2)Pi(1/2) (v = 0, J= 3/2, 11/2 and 21/2) + O ((3)P(2,1)), for excitation energies ranging from the onset (E(avl)/hc = 0 cm(-1)) to E(avl)/hc approximately 900 cm(-1). The angular anisotropy parameter beta was obtained as a function of available energy. Photofragment multiphoton ionization (PHOMPI) spectra were also recorded in the energy range E(avl)/hc = 0-300 cm(-1) for each of these channels. Large fluctuations of beta as a function of E(avl) were found in all observed dissociation channels. These variations are discussed in terms of the lifetimes of the originally photoexcited overlapping resonances in the A(2)B(2) state of NO(2), the dynamics of which are strongly influenced by nonadiabatic coupling with the X[combining tilde](2)A(1) state. The potential use of this photolysis process for production of cold oxygen atoms is discussed.  相似文献   

16.
The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible.  相似文献   

17.
NO的氧化是大气化学研究的重要课题.CIS-(NO)。是一氧化氮氧化过程的中间体,对其在低温基质条件下的形成和氧化过程研究前文风已作了报导.H。WhiffS等门曾用中压汞灯作为光解光源(220-320urn),研究了ets-(NO)。在Ar低温基质中的光解,产物为N。O和NZO3.CIS-(NO  相似文献   

18.
Ultraviolet photodissociation of SH (X 2Pi, upsilon"=2-7) and SD (X 2Pi, upsilon"=3-7) has been studied at 288 and 291 nm, using the velocity map imaging technique to probe the angular and speed distributions of the S(1D2) products. Photodissociation cross sections for the A 2Sigma+<--X 2Pi(upsilon") and 2Delta<--X 2Pi(upsilon") transitions have been obtained by ab initio calculations at the CASSCF-MRSDCI/aug-cc-pV5Z level of theory. Both the experimental and theoretical results show that SH/SD photodissociation from X 2Pi (upsilon"相似文献   

19.
The nitrous oxide dimer cation (N2O)2+ has been studied in the visible wavelength range by photodissociation of a mass-selected high-energy ion beam followed by energy analysis of the charged photofragments. Information on the angular anisotropy of the fragmentation process has been obtained by rotating the polarization direction of the laser light. The results allow conclusions to be drawn about the lifetime of the optically accessed excited electronic state and on the energy disposal in the photofragmentation event.  相似文献   

20.
The speed and angular distribution of O atoms arising from the photofragmentation of C(5)H(8)-O(2), the isoprene-oxygen van der Waals complex, in the wavelength region of 213-277 nm has been studied with the use of a two-color dissociation-probe method and the velocity map imaging technique. Dramatic enhancement in the O atoms photo-generation cross section in comparison with the photodissociation of individual O(2) molecules has been observed. Velocity map images of these "enhanced" O atoms consisted of five channels, different in their kinetic energy, angular distribution, and wavelength dependence. Three channels are deduced to be due to the one-quantum excitation of the C(5)H(8)-O(2) complex into the perturbed Herzberg III state ((3)Δ(u)) of O(2). This excitation results in the prompt dissociation of the complex giving rise to products C(5)H(8)+O+O when the energy of exciting quantum is higher than the complex photodissociation threshold, which is found to be 41740 ± 200 cm(-1) (239.6±1.2 nm). This last threshold corresponds to the photodissociation giving rise to an unexcited isoprene molecule. The second channel, with threshold shifted to the blue by 1480 ± 280 cm(-1), corresponds to dissociation with formation of rovibrationally excited isoprene. A third channel was observed at wavelengths up to 243 nm with excitation below the upper photodissociation threshold. This channel is attributed to dissociation with the formation of a bound O atom C(5)H(8)-O(2) + hv → C(5)H(8)-O(2)((3)Δ(u)) → C(5)H(8)O + O and∕or to dissociation of O(2) with borrowing of the lacking energy from incompletely cooled complex internal degrees of freedom C(5)H(8) (?)-O(2) + hv → C(5)H(8) (?)-O(2)((3)Δ(u)) → C(5)H(8) + O + O. The kinetic energy of the O atoms arising in two other observed channels corresponds to O atoms produced by photodissociation of molecular oxygen in the excited a?(1)Δ(g) and b?(1)Σ(g) (+) singlet states as the precursors. This indicates the formation of singlet oxygen O(2)(a?(1)Δ(g)) and O(2)(b?(1)Σ(g) (+)) after excitation of the C(5)H(8)-O(2) complex. Cooperative excitation of the complex with a simultaneous change of the spin of both partners (1)X-(3)O(2) + hν → (3)X-(1)O(2) → (3)X + (1)O(2) is suggested as a source of singlet oxygen O(2)(a?(1)Δ(g)) and O(2)(b?(1)Σ(g) (+)). This cooperative excitation is in agreement with little or no vibrational excitation of O(2)(a?(1)Δ(g)), produced from the C(5)H(8)-O(2) complex as studied in the current paper as well as from the C(3)H(6)-O(2) and CH(3)I-O(2) complexes reported in our previous paper [Baklanov et al., J. Chem. Phys. 126, 124316 (2007)]. The formation of O(2)(a?(1)Δ(g)) from C(5)H(8)-O(2) was observed at λ(pump) = 213-277 nm with the yield going down towards the long wavelength edge of this interval. This spectral profile is interpreted as the red-side wing of the band of a cooperative transition (1)X-(3)O(2) + hν → (3)X(T(2))-(1)O(2)(a?(1)Δ(g)) in the C(5)H(8)-O(2) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号