首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bio synthesis of nanoparticles using plant parts has gained considerable attention, given the fact that the method is green, environment friendly, cheaper, simple and involves no hazardous substances. The present study involves the green synthesis of copper oxide nanoparticles (CuO NPs) using chitosan and the aqueous leaf extract of Elsholtzia blanda, an aromatic medicinal herb. The synthesized E.blanda-chitosan mediated copper oxide nanoparticles (CPCE) and E. blanda mediated copper oxide nanoparticles (PCE) were subjected to different characterization techniques, Ultraviolet–visible (UV–Vis), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX), High Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). The absorbance peaks in UV–Vis spectroscopy at 286 nm and 278 nm for CPCE and PCE respectively indicated the formation of nanoparticles. TEM and SEM employed for studying the surface morphology showed rod-like and spherical morphology bearing average size of 47.71 nm for CPCE and 36.07 nm for PCE. The antibacterial activities of the prepared nanoparticles were tested against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Salmonella typhi by agar well diffusion method. The results indicate that CuO NPs possess effective antibacterial potential against all tested bacteria with a maximum zone of inhibition of 18 mm for Enterococcus faecalis. Antioxidant studies revealed the highest DPPH scavenging activity of 89% at 25 μg/mL concentration of the nanoparticles. The percentage of the photo catalytic degradation of Congo red was found to be 95% after 10 h.  相似文献   

2.
Green chemistry of nanomaterials from synthesis to diverse biomedical applications is a discussion of town in the current scientific scenario. In this work, Ocimum basilicum leaves extract was utilized as the reducing agent in the synthesis of ZnO nanoparticles. Green synthesized ZnO NPs mediated via Ocimum basilicum extract were decorated on the reduced graphene oxide (RGO) sheet by the simple one-step method. The prepared green synthesized RGO-ZnO nanocomposites (NCs) were characterized via the X-ray diffractometer. The average crystallite size of ZnO was 25 nm which confirmed the wurtzite hexagonal structure of ZnO. The scanning Electron Microscopy technique confirmed the spherical morphology of particle size of 31 nm. Further, Fourier Transform Infrared Spectroscopy confirms the Zn-O bond stretching in the RGO-ZnO NCs. Antioxidant activity of the green synthesized Ocimum basilicum ZnO NPs and RGO-ZnO NCs were performed by DPPH scavenging activities and found the dose-dependent. RGO-ZnO effectively inhibited the α-amylase and α-glucosidase for in vitro antidiabetic activities. Moreover, RGO-ZnO NCs showed the antibacterial potential with increasing concentration against the gram-positive (Cocci) and gram-negative (E. coli) bacterial strains. In Photocatalytic activity, the ZnO NPs and RGO-ZnO NCs were utilized as the catalyst and degraded the Rh-B dye 91.4% and 96.7% under UV–visible light. Overall, RGO-ZnO NCs showed better results in antibacterial, antidiabetic activity as well as photocatalytic activity against the pure ZnO NPs. Hence, RGO-ZnO nanocomposites have demonstrated the opportunity to be an entrancing material for photocatalysis and biological studies.  相似文献   

3.

This work reports an innovative, effortless and inexpensive method for the preparation of ZnO nanoparticles by green approach using leaf extract of Piper betleas a reducing-stabilizing negotiator. The prepared ZnO NPs were characterized through XRD, FTIR, UV–Visible spectroscopy, and EDX etc. The band gap energy of the sample was estimated as 3.41 eV which is larger than the bulk ZnO (Eg?=?3.37 eV). The observed blue shift is attributed to the quantum confinement of excitons. FTIR analysis showed the presence of alkaloids, flavonoids, polyphenols, and terpenoid. TEM analysis showed that each nanoparticle comprised of 1 to 2 nano-crystallites. Photocatalytic activity results revealed that ZnO-NPs prepared through green synthesis route were found to be efficient in the degradation of toxic reactive red dye with degradation efficiency of 96.4% having high photodegradation rate-constant of 1.6?×?10–2 min?1. As an antimicrobial agent, the ZnO NPs are effective against both gram-positive (Bacillus subtilis) and negative bacteria (Escherichia coli), with the zones of clearance as 16.4 and 14.3 mm, respectively. Therefore, present research signifies an effective approach to utilize as-prepared ZnO NPs as efficient photocatalysts as well as antimicrobial agent.

  相似文献   

4.
《印度化学会志》2023,100(2):100917
The aim of this study was to examine the environmentally friendly green production of zinc oxide nanoparticles (ZnO NPs) utilizing Oldenlandia Umbellata (OU) leaves extract, as well as to study the photo catalytic and biological activities of these particles. XRD, UV-Visible, FT-IR, SEM, EDAX, TEM and Zeta potential studies were used to investigate the purity and properties of as synthesized ZnO NPs. From the FT-IR investigations presenting functional groups were verified. The hexagonal form and wurtzite crystal nature were confirmed by SEM and XRD photographs. The decreasing zeta potential of ?23.7 mV suggested the stability of OU-ZnO NPs, which was validated by Zeta potential and EDAX measurements. The OU-ZnO NPs' photo catalytic activity was also examined using their methylene red dye degradation potential. It also has a DPPH test that revealed it had a 66% radical scavenging activity. Furthermore, this substance was proven to be an effective anti-fungal agent against Candida albicans, which demonstrated a maximum mycelial inhibition of 12.5 ± 0.7. Additionally, the biosynthesized nanoparticles had high antibacterial activity verses all of the microbiological strains tested to varying degrees.  相似文献   

5.
In this study, the copper sulfide nanoparticles (CuS‐NPs) and the zinc oxide/zinc hydroxide nanoparticles ((ZnO/Zn(OH)2‐NPs) were synthesized by a simple and low‐cost method, and the synthesized nanoparticles were characterized and identified by UV–Vis, field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The antimicrobial activity of the CuS‐NPs and the ZnO/Zn(OH)2‐NPs were examined by broth dilution to determine the minimal inhibitory concentration (MIC) of antibacterial agent required to inhibit the growth of a pathogen and the minimum bactericidal concentration (MBC) required to kill a particular bacterium. Agar disc diffusion method was used to determine the zone of inhibition. The nanoparticles demonstrated potent antibacterial activity against Klebsiella pneumonia (ATCC 1827), Acinetobacter baumannii (ATCC 150504), Escherichia coli (ATCC 33218) and Staphylococcus aureus (ATCC 25293). Antifungal activity against Aspergillus oryzae (PTCC 5164) was also obtained. The data obtained from antimicrobial activities by broth dilution and agar disc diffusion methods exhibited the CuS‐NPs were more effective than the ZnO/Zn(OH)2‐NPs. A good correlation was observed between the data obtained by both methods.  相似文献   

6.
ABSTRACT

We reported a green and simple method for biosynthesizing zinc oxide nanoparticles (ZnO NPs) using Corymbia citriodora leaf extract as reducing and stabilizing agent. SEM, EDX, XRD, UV–VIS spectroscopy, Raman spectroscopy and TGA have been used for characterizing the biosynthesized ZnO NPs. The results indicating the ZnO NPs synthesized by C. citriodora leaf extract have high purity and the average size is 64?nm. The photocatalytic activity of the ZnO NPs has been investigated by degradation methylene blue under visible light irradiation. Due to the smaller size, the biosynthesized ZnO NPs showed an excellent photocatalytic performance.  相似文献   

7.
The ever‐increasing resistance of plant microbes towards fungicides and bactericides has been causing serious threat to plant production in recent years. For the development of an effective antifungal agent, we introduce a novel hydrothermal protocol for synthesis of chitosan iron oxide nanoparticles (CH‐Fe2O3 NPs) using acetate buffer of low pH 5.0 for intermolecular interaction of Fe2O3 NPs and CH. The composite structure and elemental elucidation were carried out by using X‐ray power diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X‐ray (EDX), Transmission Electron Microscopy (TEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Ultraviolet Visible Absorption Spectroscopy (UV–vis spectroscopy). Additionally, antifungal activity was evaluated both In vitro and In vivo against Rhizopus oryzae which is causing fruit rot disease of strawberry. We compared different concentrations (0.25%, 0.50%, 075% and 1%) of CH‐Fe2O3 NPs and 50% synthetic fungicide (Matalyxal Mancozab) to figure out suitable concentration for application in the field. XRD analysis showed a high crystalline nature of the NPs with average size of 52 nanometer (nm). SEM images revealed spherical shape with size range of 50–70 nm, whereas, TEM also revealed spherical shape, size ranging from 0 nm to 80 nm. EDX and FTIR results revealed presence of CH on surface of Fe2O3 NPs. The band gap measurement showed peak 317–318 nm for bare Fe2O3 NPs and CH‐Fe2O3 NPs respectively. Antifungal activity in both In vitro and In vivo significantly increased with increase in concentration. The overall results revealed high synergetic antifungal potential of organometallic CH‐Fe2O3 NPs against Rhizopus oryzae and suggest the use of CH‐Fe2O3 NPs against other Phyto‐pathological diseases due to biodegradable nature.  相似文献   

8.
Nowadays, the industrial wastewater pollutants including toxic dyes and pathogenic microbes have caused serious environmental contaminations and human health problems. In the present study, eco-friendly and facile green synthesis of Ag modified ZnO nanoparticles (ZnO-Ag NPs) using Crataegus monogyna (C. monogyna) extract (ZnO-Ag@CME NPs) is reported. The morphology and structure of the as-biosynthesized product were characterized by field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), differential reflectance spectroscopy (DRS), dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS) techniques. TEM and FESEM images confirmed the oval and spherical-like structure of the products with a size of 55–70 nm. The EDS analysis confirmed the presence of Zn, Ag, and O elements in the biosynthesized product. The photocatalytic results showed ZnO-Ag@CME NPs were degraded (89.8% and 75.3%) and (94.2% and 84.7%) of methyl orange (MO) and basic violet 10 (BV10), under UV and sunlight irradiations, respectively. The Ag modified ZnO nanoparticles exhibited enhanced catalytic activity towards organic pollutants, and showed better performance than the pure ZnO nanoparticles under UV and sunlight irradiations. This performance was probably due to the presence of silver nanoparticles as a plasmonic material. Antibacterial activity was performed against different bacteria. ZnO-Ag@CME NPs showed high antibacterial activity against K. pneumoniae, S. typhimurium, P. vulgaris, S. mitis, and S. faecalis with MIC values of 50, 12.5, 12.5, 12.5, and 12.45 µg/mL, respectively. All in all, the present investigation suggests a promising method to achieve high-efficiency antibacterial and catalytic performance.  相似文献   

9.
Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs) were successfully synthesized by the Sol-gel method coated with polyethylene glycol as a stabilizing and capping agent. The UV–Vis spectrophotometer analysis was done to analyze the optical property of the nanoparticles. XRD pattern showed the hexagonal structure of ZnO nanoparticles and the reduction in the intensity of the peaks of Ag-ZnO NPs indicates the incorporation of Ag+ ions in the ZnO lattices. The surface structural properties of the NPs were confirmed by Field Emission Scanning Electron Microscope (FE-SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). The elemental composition of nanoparticles was confirmed by EDAX and XRF-Spectroscopy. The functional group of ZnO and Ag nanoparticles were determined by FT-IR spectroscopy. The photocatalytic activity of Ag-ZnO NPs was studied against ponceau and the maximum degradation percentage was observed to be 89% at 140 min. Further, Ag-ZnO NPs unveiled high potent antibacterial activity against the selected bacterial pathogens and it also rendered significant anticancer activity in UVB-induced HaCaT cells. Consequently, the fluorescent microscopic analysis confirmed the increasing Reactive Oxygen Species (ROS) generation and Mitochondrial Membrane Potential (MMP) loss in the HaCaT cells that leads to the apoptosis induction. Hence, the selected combination of nanoparticles has proven to exhibit higher photocatalytic, antibacterial and anticancer activity. In the near future, it could be an efficient tool for eradicating the dye pollution from wastewater and also preferably be utilized in the cosmetics and pharmaceutical industries to prevent skin cancer.  相似文献   

10.
《印度化学会志》2023,100(2):100920
In the present work, silver-doped ZnO (Ag–ZnO NPs) with different concentrations of silver ions (0.3, 0.5, 1.0 and 1.5 mol %) were synthesized by using a simple co-precipitation method. The Ag–ZnO NPs were primarily characterized by XRD, FT-IR, SEM, EDS, TEM, UV–Vis. DRS, PL and BET surface area. The XRD analysis of Ag–ZnO NPs shows a wurtzite structure and optimized Ag–ZnO NPs (1.0 mol %) exhibit a lower crystallite size of 15.96 nm than that of bare ZnO (19.07 nm). Optical study shows a decrease in band gap from 3.13 to 2.97 eV as the concentration of Ag ions increases from 0.3 to 1.5 mol%. TEM images reveal the spherical shape particle with sizes ranging between 10 and 15 nm. From the multipoint BET plot, the surface area of Ag–ZnO NPs found 38.06 m2/gwhich is higher than the ZnO NPs (34.48 m2/g). The photocatalytic study demonstrated that the Ag–ZnO NPs (1.0 mol %) has an excellent photodegradation efficiency of Methyl Orange (96.74%)with a 26% increment as compared to bare ZnO (70.47%). Furthermore, the bactericidal activity of Ag–ZnO NPs (1.0 mol %) was investigated against four different bacterial strains. The results explored that the Gram-negative bacteria (E. coli and P. vulgaris) are more sensitive than Gram-positive (S. aureus and B. cereus) to Ag–ZnO NPs. Overall, the anticipated material is economical and reusable for photodegradation and antibacterial activity.  相似文献   

11.
Silver and copper nanoparticles were produced by an ecologically safe metal vapor synthesis (MVS) method using acetone as an organic dispersion medium. Transmission electron microscopy (TEM) showed that the specimens are spherical and polydisperse, and their average size is 2.5 nm for silver nanoparticles (Ag NPs) and 2.6 nm for copper nanoparticles (Cu NPs). X-ray photoelectron spectroscopy analyses showed that the state of silver in the nanoparticles is close to that of silver in the Ag0 state, whereas copper black contains two oxidized states of the metal—Cu+ and Cu2+. Biological in vitro studies demonstrated that the nanoparticles have antibacterial activity against Gram-positive and Gram-negative bacterial species. Cu NPs exhibited more prominent antibacterial effects and induced significant growth inhibition of Bacillus cereus and Escherichia coli. Both types of nanoparticles showed anticancer properties in vitro. Cu NPs induced intense cytotoxicity in cancer and normal fibroblasts in vitro cultures, but their inhibitory effect against noncancerous cells was milder compared with cancer cell lines. Ag NPs demonstrated selective cytotoxicity against human lung and cervical adenocarcinoma cell lines. Further in vitro studies indicated that the mechanism of Ag NPs and Cu NPs anticancer effects involves induction of apoptosis. The present study describes a green synthesis approach for production of biologically active silver and copper nanoparticles and highlights their potential for medical application.  相似文献   

12.
Six complexes of Zn(II), Cd(II) and Hg(II) with sulphur containing Schiff base ligand, 1,4‐bis((1H‐pyrrol‐2‐yl)methylene)thiosemicarbazide in 1:1 and 1:2 ratio has been synthesized. Complexes were characterized by molar conductance measurement, elemental analyses, FT‐IR, 1H‐NMR, and FAB/ESI‐Mass. The complexes were used as a single source precursor for the synthesis of ZnS/CdS/HgS nanoparticles by their thermal decomposition in the presence of different surfactants. The precursor: surfactant ratio and temperature plays important role in determining the size of the nanoparticles. The size and morphology of nanoparticles has been ascertained by UV‐Vis spectroscopy, XRD measurements and Transmission Electron Microscopy (TEM). Schiff base, complexes and nanoparticles were tested for antibacterial activity and MIC values against E. coli. The complexes were found more potent than the corresponding Schiff bases and nanoparticles.  相似文献   

13.
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.  相似文献   

14.
《印度化学会志》2023,100(2):100879
The technique of pulsed laser ablation in liquid media was successfully used to prepare zinc oxide ZnO nanoparticles NPs to enhance glass ionomer GI restorative. The synthesized ZnO NPs were confirmed using UV–Visible spectroscopy, XRD, and TEM. The absorption spectra revealed that the absorbance intensity of the prepared ZnO NPs increased as the number of laser pulses increased, with an absorbance peak at 230 nm due to quantum confinement. The crystalline nature of NPs with hexagonal structure is revealed by XRD analysis. The TEM images demonstrated the nanorod shape with a length of about 3.33 nm and there were spherical nanoparticles ranging from 5 nm to 30 nm. ZnO NPs with and without GI were tested for antibacterial activity against Streptococcus mutans bacteria, which shows slight improvement after adding ZnO NPs to glass ionomer as a result of containing effective ingredients in its composition. The agar well diffusion method results revealed that ZnO with GI had a higher antibacterial activity compared with pure ZnO NPs. Finally, the compressive strength test illustrated significant enhancement of up to 50% associated with the ZnO NP's concentration increase.  相似文献   

15.
Zinc oxide@carbon quantum dots (ZnO@CQDs) nanocomposite was prepared via a facile hydrothermal method. Characterization of the obtained samples was carried out by Scanning electron microscopy-EDX(SEM–EDX), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Photoluminescence (PL), and Fourier transformed infrared spectroscopy (FT-IR). These results revealed that we have prepared ZnO@CQDs nanocomposite successfully. Our study revealed that the antibacterial efficiency (against S.aureus and E.coli) under visible light irradiation of as prepared ZnO@CQDs nanocomposite was higher than pure ZnO nanoparticles. The ZnO@CQDs nanocomposite showed excellent antibacterial activity against Gram-negative and Gram-positive bacteria with a minimal inhibitory concentration (6–8 mg/mL) against to E.coli and S.aureus. We also tested the light response of ZnO@CQDs under UV–vis light, by calculating its band gap data, after decorated with CQDs, the band gap of the pure ZnO can significantly decreased from 2.57 eV to 2.50 eV. The ZnO decorated by CQDs can both enhance the light absorption and suppress photogenerated electron–hole's recombination which results in the enhancement of antibacterial properties.  相似文献   

16.
Regarding applicative, facile, green chemical research, a bio-inspired approach is being reported for the synthesis of Ag nanoparticles by pectin as a natural reducing and stabilizing agent without using any toxic and harmful reagent. The biosynthesized Pectin/Ag NPs were characterized by advanced physicochemical techniques like ultraviolet–visible (UV–Vis), Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HR-TEM), Energy Dispersive X-ray spectroscopy (EDX), and X-ray Diffraction (XRD) study. It has been established that pectin-stabilized silver nanoparticles have a spherical shape with a mean diameter from 15 to 20 nm. After that, the biological performance of those biomolecules functionalized Ag NPs was investigated. In the MTT assay, human colorectal carcinoma (HCT-8 [HRT-18], Ramos.2G6.4C10, HT-29, and HCT 116) and normal cell lines (HUVEC) were used to study the cytotoxicity and anticancer potential of human colorectal over the AgNO3 and Pectin/Ag NPs. The cell viability of Pectin/Ag NPs was very low against human colorectal carcinoma cell lines without any cytotoxicity on the normal (HUVEC) cell line. The best anti-human colorectal carcinoma properties of Pectin/Ag NPs against the above cell lines was in the case of the HCT 116 cell line. The antioxidant properties of the AgNO3 and Pectin/Ag NPs were calculated against DPPH free radicals. The IC50 of Pectin/Ag NPs was 167 µg/mL. According to the above results, the Pectin/Ag NPs may be administrated to treat human colorectal carcinoma in humans.  相似文献   

17.
The development of nanotechnology has generated different nanoscale-sized materials, with metal-based nanomaterials being some of the most interesting and promising. Thousands of articles in various specialized journals all over the world are dedicated to different metallic nanomaterials. Metallic nanomaterials are being widely researched, with gold-, silver-, iron-, and copper-based materials showing potential in medicine. Studies have demonstrated the effect of copper nanoparticles in medicinal herbs on the prevention, control, and treatment of microbial diseases. Experiments have examined the chemical characterization and assessment of the antioxidant, cytotoxicity, antibacterial, and antifungal activities of copper nanoparticles (Cu NPs) using the aqueous extract of Stachys lavandulifolia Vahl flower. These nanoparticles were characterized by UV–visible spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction analysis. TEM and FE-SEM images exhibited a uniform spherical morphology and diameters of 10–25 nm for the biosynthesized nanoparticles. FT-IR results suggested polysaccharides and protein in S. lavandulifolia acted as reducing agents, reducing copper ions to Cu NPs. In vitro biological experiments indicated that Cu NPs have excellent antioxidant potential against 2,2-diphenyl-1-picrylhydrazyl, antifungal effects against Candida krusei, Candida parapsilosis, Candida guilliermondii, Candida glabrata, and Candida albicans, and antibacterial activities against Staphylococcus aureus, Enterococcus faecalis, Staphylococcus saprophyticus, Bacillus subtilis, Streptococcus pneumonia, Escherichia coli O157:H7, Salmonella typhimurium, Listeria monocytogenes, Proteus mirabilis, and Pseudomonas aeruginosa. These nanoparticles did not have cytotoxicity properties against human umbilical vein endothelial cells. These results indicate that the inclusion of S. lavandulifolia extract ameliorates the solubility of Cu NPs, which leads to a remarkable enhancement in fungicidal and bactericidal effects under in vitro conditions.  相似文献   

18.
The objective of this study is to synthesize ZnO and Mg doped ZnO (Zn1−xMgxO) nanoparticles via the sol-gel method, and characterize their structures and to investigate their biological properties such as antibacterial activity and hemolytic potential.Nanoparticles (NPs) were synthesized by the sol-gel method using zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and magnesium acetate tetrahydrate (Mg(CH3COO)2.4H2O) as precursors. Methanol and monoethanolamine were used as solvent and sol stabilizer, respectively. Structural and morphological characterizations of Zn1−xMgxO nanoparticles were studied by using XRD and SEM-EDX, respectively. Photocatalytic activities of ZnO and selected Mg-doped ZnO (Zn1−xMgxO) nanoparticles were investigated by degradation of methylene blue (MeB). Results indicated that Mg doping (both 10% and 30%) to the ZnO nanoparticles enhanced the photocatalytic activity and a little amount of Zn0.90 Mg0.10 O photocatalyst (1.0 mg/mL) degraded MeB with 99% efficiency after 24 h of irradiation under ambient visible light. Antibacterial activity of nanoparticles versus Escherichia coli ( E. coli ) was determined by the standard plate count method. Hemolytic activities of the NPs were studied by hemolysis tests using human erythrocytes. XRD data proved that the average particle size of nanoparticles was around 30 nm. Moreover, the XRD results indicatedthat the patterns of Mg doped ZnO nanoparticles related to ZnO hexagonal wurtzite structure had no secondary phase for x ≤ 0.2 concentration. For 0 ≤ x ≤ 0.02, NPs showed a concentration dependent antibacterial activity against E. coli . While Zn0.90Mg0.10 O totally inhibited the growth of E. coli , upper and lower dopant concentrations did not show antibacterial activity.  相似文献   

19.

In recent years, progress of biological synthesis of nanoparticles is inevitable due to its important applications. In this research, a new and simple method for the synthesis of AgNPs from plant extracts is presented. The extract from shoots of the plant Tribulus terrestris L. was mixed with AgNO3 with the aim of biologically synthesizing AgNPs. The biomolecules existing in the extract were accountable for the fast reduction of silver ions (Ag+) to AgNPs. Characterization of biosynthesized AgNPs was performed by UV–Vis, TEM, DLS, and XRD. The AgNPs exhibit a strong peak at 434 nm, and sphere-shaped AgNPs were found to be ~?25 nm. The biosynthesized silver nanoparticles have demonstrated high antibacterial effect against pathogenic bacteria (i.e., Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa). In addition, the in vitro cytotoxicity effect of biosynthesized silver nanoparticles was also investigated and was detected to be up to 15.62 μg/mL in the treated Neuro2A cells. The plant-mediated biosynthesis of AgNPs has comparatively rapid, eco-friendly, inexpensive and wide-ranging application in modern medicine and the food industry.

  相似文献   

20.
Rust-induced photocatalytic and antibacterial activities of ZnO nanoparticles derived from Prosopis juliflora leaf extracts by biosynthesis using the hydrothermal method at 170 °C are reported in this study. The characterization has been accomplished by various methods such as XRD, DRS, FT-IR, SEM, TEM, EDAX, and PL spectra. XRD exhibits that ZnO has a hexagonal wurtzite structure with a preferred orientation of 101 planes. The functional groups, which are present in the leaf extracts, are responsible for corresponding peaks in FT-IR spectra. The FESEM images of the synthesized nanoparticles show the morphology sphere like structure. ZnO particle size of 65 nm has been observed from HR-TEM analysis. The elemental composition has a good agreement with the biosynthesized ZnO nanoparticles. The antibacterial activities have been carried out in vitro assays against four different pathogens viz Escherichia coli (E. coli), Rhodococcus rhodochrous (R. rhodochrous), Bacillus subtilis (B. subtilis) and Vibrio cholera (V. Cholera) against a standard (streptomycin sulfate). Furthermore, the Photocatalytic ability of the titled nanoparticles has been experimented from the rust solution with methylene blue and degradation under UV radiation of 99%. The proposed mechanism is based on scavenger studies and it is investigated during the photo degradation of Methylene blue. The catalytic amount and recovery of photocatalyst have also been studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号