首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Complexation of ketoconazole (KET), a broad-spectrum antifungal drug, with β- and γ-cyclodextrins (CDs), heptakis (2,6-di-O-methyl)-β-CD (2,6-DM-β-CD), heptakis (2,3,6-tri-O-methyl)-β-CD (TM-β-CD), 2-hydroxypropyl-β-CD (2HP-β-CD) and carboxymethyl-β-CD (CM-β-CD) was studied. The stability constants were determined by the solubility method at pH = 6 and for 2,6-DM-β-CD and CM-β-CD at pH = 5. At pH = 6, the stability constants increased in the order: TM-β-D < γ-CD < 2HP-β-CD < β-CD < CM-β-CD < 2,6-DM-β-CD. At pH = 5, due to the increased ionization of KET, the stability constant with CM-β-CD increased and with 2,6-DM-β-CD decreased. For complexes of KET with 2HP-β-CD and 2,6-DM-β-CD, the thermodynamic parameters of complexation were determined from the temperature dependence of the corresponding stability constants. For β–γ and TM-β-CD complexes, calculations using HyperChem 6 software by the Amber force field were carried out to gain some insight into the host–guest geometry.  相似文献   

2.
Risperidone (RSP) is an atypical antipsychotic drug which acts as a potent antagonist of serotonin-2 (5TH2) and dopamine-2 (D2) receptors in the brain; it is used to treat schizophrenia, behavioral and psychological symptoms of dementia and irritability associated with autism. It is a poorly water soluble benzoxazole derivative with high lipophilicity. Supramolecular adducts between drug substance and two methylated β-cyclodextrins, namely heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) were obtained in order to enhance RSP solubility and improve its biopharmaceutical profile. The inclusion complexes were evaluated by means of thermoanalytical methods (TG—thermogravimetry/DTG—derivative thermogravimetry/HF—heat flow), powder X-ray diffractometry (PXRD), universal-attenuated total reflectance Fourier transform infrared (UATR-FTIR), UV spectroscopy and saturation solubility studies. Job’s method was employed for the determination of the stoichiometry of the inclusion complexes, which was found to be 2:1 for both guest–host systems. Molecular modeling studies were carried out for an in-depth characterization of the interaction between drug substance and cyclodextrins (CDs). The physicochemical properties of the supramolecular systems differ from those of RSP, demonstrating the inclusion complex formation between drug and CDs. The RSP solubility was enhanced as a result of drug encapsulation in the CDs cavity, the higher increase being obtained with DM-β-CD as host; the guest–host system RSP/DM-β-CD can thus be a starting point for further research in developing new formulations containing RSP, with enhanced bioavailability.  相似文献   

3.
In phosphate buffer solution of pH5.4, the interaction of meso-tetrakis(2-thienyl)porphyrin(H2TTP) and Cu-meso-tetrakis(2-thienyl)porphyrin(Cu-TTP) with α-cyclodextrin(α-CD), β-CD, γ-CD, heptakis(2,3,6-tri-O-methyl)-β-CD(TM-β-CD) has been studied by means of UV-vis, fluorescence and 1HNMR spectroscopy, respectively. The H2TTP and Cu-TTP can form 1:2 inclusion complexes with TM-β-CD and 1:1 inclusion complexes with the other three cyclodextrins. In this paper, the inclusion constants (K) of H2TTP and Cu-TTP for the formation of the inclusion complexes have been estimated from the changes of absorbance and fluorescence intensity in phosphate buffer solution. The inclusive capabilities of different kinds of cyclodextrins are compared. The result shows that the inclusion ability of α-CD with H2TTP and Cu-TTP is the strongest among the three native CDs. The inclusion ability of modified β-CD with H2TTP and Cu-TTP is stronger, compared to the native β-CD, which indicates that the capacity matching plays a crucial role in the inclusion procedure except for the hydrophobic effect. In addition 1HNMR spectra supports the inclusion conformation of the TM-β-CD-Cu-TTP inclusion complex, indicating the interaction mechanism of inclusion processes.  相似文献   

4.
Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen, indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution (which ranged from R s = 1.80 for naproxen to R s = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and 15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R s value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R s = 0.89).  相似文献   

5.
Cypermethrin/β-CD complexes were prepared at 1:2 cypermethrin/β-CD molar ratio by different complexation methods: conventional coprecipitation, suspension and kneading methods as well as “melting in solution” technique, which was developed in our laboratory. The complexes were investigated by UV-spectrophotometry and thermal analysis. It was found that complexes made by coprecipitation, suspension and kneading methods contained cypermethrin not only in complexed but also in uncomplexed form. The guest molecule in the complex prepared by “melting in solution” technique showed to be completely complexed, so it was the most effective complexation method studied.Investigating the solubility of cypermethrin with different cyclodextrins (CDs), it was established that the increase of solubility of cypermethrin was the highest in case of methylated cyclodextrins. The equilibrium constants were calculated from solubility isotherms. On the basis of these results, the heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) complex was the more stable. By UV-irradiation measurements it was found that the photodegradation of cypermethrin was inhibited by methylated β-CDs.  相似文献   

6.
Summary Heptakis(2,6-di-O-benzyl)-β-CD(I), heptakis(2,6-di-O-benzyl-3-O-pentyl)-β-CD(II), heptakis(2,6-di-O-benzyl-3-O-methyl)-β-CD(III) and heptakis(2,6-di-O-benzyl-3-O-acetyl)-β-CD(IV) derivatives were synthesized and identified. Their thermal stabilities were tested using PyGC. These CD derivatives are stable up to 300°C and suitable for use as gas chromatographic stationary phases. The fused silica capillary columns coated with heptakis(2,6-di-O-benzyl-3-O-methyl)-β-CD and heptakis(2,6-di-O-benzyl-3-O-pentyl)-β-CD showed excellent chromatographic properties in separating positional isomers.  相似文献   

7.
Nifedipine complexes with β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), 2-hydroxypropyl-β-cyclodextrin (2HP-β-CD), randomly methylated-β-cyclodextrin (RM-β-CD) and heptakis(2,6-O-dimethyl)-β-cyclodextrin (DM-β-CD) have been prepared by both kneading and heating methods and their behaviour studied by differential scanning calorimetry (DSC), diffuse reflectance mid-infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). DSC revealed the nifedipine melting endotherm with onset at approximately 171°C for the kneaded mixtures with β-CD, γ-CD and 2HP-β-CD, thus confirming the presence of nifedipine in the crystalline state, while some decrease in crystallinity was observed in the DM-β-CD kneaded mixture. With RM-β-CD, however, broadening and shifting of the nifedipine endotherm and reduction in its intensity suggested that the kneading could have produced an amorphous inclusion complex. These differing extents of interaction of nifedipine with the cyclodextrins were confirmed by FTIR and XRD studies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Partially and exhaustively methylated β-cyclodextrins [(2-methyl)-β-CD (MCD), heptakis-(2,6-di-O-methyl)-β-CD (DIMEB), and heptakis-(2,3,6-tri-O-methyl)-β-CD (TRIMEB)] have been compared in the hydrolysis and enantiodiscrimination of benzodiazepine derivative (R)- or (S)-oxazepam hemisuccinate (OXEMIS), using nuclear magnetic resonance (NMR) spectroscopy as an investigation tool. After 6 h, MCD induced an 11% hydrolysis of OXEMIS, remarkably lower in comparison with underivatized β-CD (48%), whereas no hydrolysis was detected in the presence of DIMEB or TRIMEB after 24 h. DIMEB showed greater ability to differentiate OXEMIS enantiomers in comparison to TRIMEB, by contrast MCD did not produce any splitting of racemic OXEMIS resonances. Both enantiomers of OXEMIS underwent deep inclusion of their phenyl pendant into cyclodextrins cavities from their wider rims, but tighter complexes were formed by DIMEB with respect to TRIMEB.  相似文献   

9.
The electrochemical oxidation of 3,4-ethylenedioxythiophene (EDOT) on platinum is studied in electrolyte solutions containing hydroxypropyl-β-cyclodextrin (HP-β-CD). HP-β-CD is found to increase the solubility of EDOT up to a concentration of 0.026 M in aqueous solutions. Addition of HP-β-CD (0.1 M) produces a slight red shift of the EDOT main absorption band from 254.9 to 257.7 nm and an increase of the HP-β-CD concentration decreases the absorption coefficient, max to 6150 l mol−1 cm−1 in the UV–vis region, indicating complex formation. The cyclic voltammetric response of EDOT in 0.1 M aqueous LiClO4 solutions consists of an ill-defined wave (P1) and an adsorption peak (P2). Contrary to the case of oxidation in acetonitrile medium, a post-peak is observed in the voltammograms of EDOT electro-oxidation in aqueous LiClO4 solutions due to the adsorption of the oxidized EDOT species. A gradual reduction of the peak current of P2 with increasing [HP-β-CD] and its total disappearance at high [HP-β-CD] suggest complex formation between HP-β-CD and EDOT√+ and also the peak P2 to be due to adsorption of EDOT√+ species. The experiments intended to show the effect of ‘pre-adsorbed’ HP-β-CD on EDOT oxidation led to the conclusion that adsorbed HP-β-CD also solubilizes EDOT at the electrode surface. The CV behaviour of EDOT in HP-β-CD is discussed in comparison with that in sodium dodecylsulfate micellar solutions. Addition of increasing amounts of HP-β-CD shifts P1 positively and P2 negatively while also suppressing P2 totally and reducing the peak current of P1 to a significant extent. At a higher concentration of HP-β-CD, viz. 0.05 M, a peak appears at 1.29 V as a result of the above two opposing effects of CD on the peak potentials of P1 and P2. This resultant peak (Pcomposite) is more positive relative to the position of P1 observed in the absence of HP-β-CD. The positive shift of the peak and peak current reduction indicate that EDOT (or an oxidized EDOT species) possibly interacts with the outer nucleophilic part of HP-β-CD. The electro-oxidation processes occurring at P1 and P2 are explained using an oligomeric approach, in which the electrochemical reactions are coupled to chemical reactions or adsorption of the oxidized species. Potential cycling of the platinum electrode in solutions containing 0.026 M EDOT+0.05 M HP-β-CD+0.1 M LiClO4 between −0.5 and 1.2 V yields an adherent and smooth polymer film of poly(ethylenedioxythiophene), as shown in the SEM examination. In situ resistance measurements carried out with the polymer films in the electroactive region show a minimum resistance in the potential range of 0.3–0.4 V. Even the electrochemically-reduced films are found to possess some residual electrical conductivity.  相似文献   

10.
When heptakis (2,6-di-O-isobutyl)-β-cyclodextrin(DOB-β-CD) is immobilized in a plasticized poly vinyl chloride (PVC) membrane, it extracts tetracycline (TC) from the sample solution into the organic membrane phase to form a complex of DOB-β-CD and TC. Since the complex formation results in an enhancement of fluorescence intensity of TC at 506 nm, the chemical recognition process can be directly translated into an optical signal. The maximum response of the sensitive membrane for TC was obtained in 0.2 mol/l KH2PO4–KOH buffer solution (pH 8.01). In the optimum conditions described, the proposed sensor responds linearly in the measuring range of 2.00×10−6 mol/l to 4.00×10−4 mol/l, and has a detection limit of 8.00×10−7 mol/l. The response time of the sensor is within 2.0 min. In addition to high reproducibility and reversibility, the sensor also exhibits good selectivity over some common pharmaceutical species and some common organic and inorganic compounds.  相似文献   

11.
Cyclodextrins with heterocyclic substitution as GC stationary phases   总被引:2,自引:0,他引:2  
Summary Two new cyclodextrin (CD) derivatives, heptakis{2,6-di-O-pentyl-3-O-[3′-(2″-chloro-4″,5″-dioxylmethene)-phenyl-5′-iso-oxazolylmethyl]}-β-CD (CD I) and heptakis{2,6-di-O-methyl-3-O-[3′-(2″-chloro)-phenyl-5′-iso-oxazolylmethyl]}-β-CD (CD II) were synthesized and coated on fused-silica capillary columns. Their chromatographic characteristics, including column efficiency, polarity, selectivity and phase transition were studied and compared with similar β-CD stationary phases. It was found that the heterocycle group has a significant effect on the selectivity of the CD stationary phases. Both stationary phases can be successfully used to separate many di- and trisubstituted benzene positional isomers and show stronger separation ability in separating low-polarity benzene positional isomers than other β-CD stationary phases.  相似文献   

12.
The equilibrium constants (K) for the inclusion complexation of three kinds of β-cyclodextrins (β-CDs: native β-CD, heptakis(2,6-di-O-methyl)-β-CD, and 6-O-α-d-glucosyl-β-CD) with OH-substituted naphthalenes (2-naphthol, 2,3-dihydroxynaphthalene, and 2,6-dihydroxynaphthalene) were determined from the induced chemical shifts of NMR measurements for inclusion complexes: K = 188–1,250 mol?1 dm3. The modified β-CDs form stable 1:1 inclusion complexes with OH-substituted naphthalenes, and the high stability of inclusion complexes of 2,6-dihydroxynaphthalene having a hydrophobic body and hydrophilic ends is shown. In addition, the structures of inclusion complexes were characterized by 2D ROESY NMR measurements. The differences in the structure of the inclusion complexes were observed for three kinds of naphthol guest molecules. Based on the results, the inclusion abilities enhanced by methylation of the OH groups at the CD rim or the side chain of branched β-CD are discussed.  相似文献   

13.
Summary Neutral cyclodextrin (CD)-modified capillary zone electrophoresis (CZE) has been applied to the chiral separation of four basic drugs— clorprenaline, benzhexol, esmolol and terazosin. Selector screening and concentration optimization experiments were performed. The resolution was 3.9 for clorprenaline, 2.3 for benzhexol, 3.1 for esmolol and 1.2 for terazosin when the running electrolyte was 60 mM hydroxypropyl-β-CD, 15 mM heptakis (2,3,6-Tri-O-methyl)-β-CD, 60 mM γ-CD and 60 mM heptakis (2,6-di-O-methyl)-β-CD, respectively, in 50 mM, pH 2.5 sodium phosphate buffer.  相似文献   

14.
The electronic absorption spectra and fluorescence spectra of 4-(2-naphthyl)pyridine (1), 2-(4-methyl-2-pyridyl)-4-(2-naphthyl)pyridine (2), and 4-(2-naphthyl)-2-phenylpyridine (3) in solutions and in complexes with β-cyclodextrin (β-CD) and well water-soluble hydroxy-propyl-β-cyclodextrin (HP-β-CD) were studied. Fluorescence near 475 nm observed in aqueous solutions of compounds 1–3 arises from protonated forms of these compounds produced in the excited state. Results of DFT quantum chemical calculations show an increase in proton affinity energies of excited-state naphthylpyridines 2 and 3. The formation of inclusion complexes with cyclodextrins makes protonation of compounds 2 and 3 more difficult, which manifests in large hypsochromic shifts of fluorescence band maxima. The stability constants of the complexes 1·HP-β-CD and 2·HP-β-CD determined from their fluorescence spectra are 3425 and 3760 L mol−1, respectively. The stability constant of the complex 3·HP-β-CD (5500±600 L mol−1) was found from the changes in the solubility of naphthylpyridine 3 in water upon complexation. Semiempirical quantum chemical calculations of the molecular structures and thermodynamic characteristics of pseudorotaxane inclusion complexes of trans-2, cis-2, and trans-2·H2O with HP-β-CD were carried out. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 272–280, February, 2007.  相似文献   

15.
Guest–host interactions were examined for neutral diclofenac (Diclo) and Diclofenac sodium (Diclo sodium) with each of the cyclodextrin (CD) derivatives: α-CD, β-CD, γ-CD and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), all in 0.05 M aqueous phosphate buffer solution adjusted to 0.2 M ionic strength with NaCl at 20 °C, and with β-CD at different pHs and temperatures. The pH solubility profiles were measured to obtain the acid–base ionization constants (pK as) for Diclo in the presence and absence of β-CD. Phase solubility diagrams (PSDs) were also measured and analyzed through rigorous procedures to obtain estimates of the complex formation constants for Diclo/CD and Diclo sodium/CD complexation in aqueous solutions. The results indicate that both Diclo and Diclo sodium form soluble 1:1 complexes with α-, β-, and HP-β-CD. In contrast, Diclo forms soluble 1:1 Diclo/γ-CD complexes, while Diclo sodium forms 1:1 and 2:1 Diclo/γ-CD, but the 1:1 complex saturates at 5.8 mM γ-CD with a solubility product constant (pK sp = 5.5). Therefore, though overall complex stabilities were found to follow the decreasing order: γ-CD > HP-β-CD > β-CD > α-CD, some complex precipitation problems may be faced with aqueous formulations of Diclo sodium with γ-CD, where the overall concentration of the latter exceeds 5.8 mM γ-CD. Both 1H-NMR spectroscopic and molecular mechanical modeling (MM+) studies of Diclo/β-CD indicate the possible formation of soluble isomeric 1:1 complexes in water.  相似文献   

16.
The interaction of piroxicam (PX) with sulfobutylether-β-cyclodextrin (SBE-β-CD) was studied by fluorescence spectroscopy and compared with that of hydroxypropyl-β-cyclodextrin (HP-β-CD). The stability constants (K) values for the PX-CDs complexes were obtained by steady-state fluorescence measurements. Inclusion conditions including concentrations of the two cyclodextrins and pH values were investigated for the complex formation in detail. The results suggested that the interaction of PX with charged CD (SBE-β-CD) is much stronger than that with uncharged CD (HP-β-CD) at any pH studied, in terms of a synergetic effect of hydrophobic and additional electrostatic interactions.  相似文献   

17.
Enantioseparation of 6,6′-dibromo-1,1′-binaphthyl-2,2′-diol (DBBD) by cyclodextrin-modified capillary zone electrophoresis (CD-CZE) was studied using the three native α, β, and γ cyclodextrins, the three hydroxypropylated cyclodextrins (2-hydroxypropyl-α, β, and γ), heptakis-2,6-di-O-methyl-β-CD (DM-β-CD), and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD). First, the acidity constants of DBBD were determined using capillary electrophoresis, before performing enantioseparation. The influence of the concentrations of the studied cyclodextrins on the enantioseparation was explored and the experimental optimal concentrations were determined and compared to the theoretical optimal concentrations. Moreover, the apparent complexation constants between each studied cyclodextrin and the two DBBD enantiomers were evaluated using a non-linear curve fitting method and three linear plotting methods (x-reciprocal, y-reciprocal and double reciprocal). For TM-β-CD, the order of migration of the enantiomers of DBBD reversed as a function of TM-β-CD concentration. The influence of the nature of methylated cyclodextrin derivatives (methyl-β-CD (M-β-CD) and DM-β-CD) was then studied. Inversion of the order of migration of the enantiomers of DBBD was observed for DM-β-CD, whereas the S enantiomer of DBBD always migrated first for M-β-CD.  相似文献   

18.
Solubilities of tricyclic acyclovir derivatives in buffered aqueous solutions of hydroxypropyl-β-cyclodextrin (HP-β-CD) at pH 5.5 and 7.0 were determined at 25 and 37 °C. Complexation of these compounds with HP-β-CD resulted in a noticeable increase of their solubility; nevertheless it was limited to tricyclic derivatives of acyclovir carrying an aryl substituent. Combination of 1H NMR and DSC techniques demonstrated the existence of inclusion complexes between acyclovir derivatives and HP-β-CD. The stability constants, estimated using the Higuchi–Connors method, were found in the range of 10–100 M−1. Additionally, the pK a values at 25 °C and molar extinction coefficients in aqueous buffered solutions were also determined for all studied compounds.  相似文献   

19.
The essential oil component α-pinene has multiple biological activities. However, its application is limited owing to its volatility, low aqueous solubility, and chemical instability. For the aim of improving its physicochemical properties, α-pinene was encapsulated in conventional liposomes (CLs) and drug-in-cyclodextrin-in-liposomes (DCLs). Hydroxypropyl-β-cyclodextrin/α-pinene (HP-β-CD/α-pinene) inclusion complexes were prepared in aqueous solution, and the optimal solubilization of α-pinene occurred at HP-β-CD:α-pinene molar ratio of 7.5:1. The ethanol-injection method was applied to produce different formulations using saturated (Phospholipon 90H) or unsaturated (Lipoid S100) phospholipids in combination with cholesterol. The size, the phospholipid and cholesterol incorporation rates, the encapsulation efficiency (EE), and the loading rate (LR) of α-pinene were determined, and the storage stability of liposomes was assessed. The results showed that α-pinene was efficiently entrapped in CLs and DCLs with high EE values. Moreover, Lipoid S100 CLs displayed the highest LR (22.9 ± 2.2%) of α-pinene compared to the other formulations. Both carrier systems HP-β-CD/α-pinene inclusion complex and Lipoid S100 CLs presented a gradual release of α-pinene. Furthermore, the DPPH radical scavenging activity of α-pinene was maintained upon encapsulation in Lipoid S100 CLs. Finally, it was found that all formulations were stable after three months of storage at 4 °C.  相似文献   

20.
Nimesulide (NIM, N-(4-nitro-2-phenoxyphenyl)methanesulfonamide) is a relatively new nonsteroidal anti-inflammatory analgesic drug. It is practically insoluble in water (<0.02 mg/mL). This very poor aqueous solubility of the drug may lead to low bioavailability. The objective of the present study was to investigate the possibility of improving the solubility and the bioavailability of NIM via complexation with polysaccharide arabinogalactan (AG), disodium salt of glycyrrhizic acid (Na2GA), hydroxypropyl-β-cyclodextrin (HP-β-CD) and MgCO3. Solid dispersions (SD) have been prepared using a mechanochemical technique. The physical properties of nimesulide SD in solid state were characterized by differential scanning calorimetry and X-ray diffraction studies. The characteristics of the water solutions which form from the obtained solid dispersions were analyzed by reverse phase and gel permeation HPLC. It was shown that solubility increases for all complexes under investigation. These phenomena are obliged by complexation with auxiliary substances, which was shown by 1H-NMR relaxation methods. The parallel artificial membrane permeability assay (PAMPA) was used for predicting passive intestinal absorption. Results showed that mechanochemically obtained complexes with polysaccharide AG, Na2GA, and HP-β-CD enhanced permeation of NIM across an artificial membrane compared to that of the pure NIM. The complexes were examined for anti-inflammatory activity on a model of histamine edema. The substances were administered per os to CD-1 mice. As a result, it was found that all investigated complexes dose-dependently reduce the degree of inflammation. The best results were obtained for the complexes of NIM with Na2GA and HP-β-CD. In noted case the inflammation can be diminished up to 2-fold at equal doses of NIM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号