首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
В данной работе рассм атриваются классы фу нкцийf(z), голоморфные в област иa (?∞<a<b≦+∞) приp≧1 иs≧0, и у довлетворяющие одному из следующих условий:
  1. Еслиb≦+∞, то $$\int\limits_a^b {(\int\limits_{ - \infty }^{ + \infty } {\left| {f\left( {x + iy} \right)} \right|^p } dy)^s dx< + \infty .} $$
  2. Еслиb=+∞, иa=0, то $$\int\limits_0^u {(\int\limits_{ - \infty }^{ + \infty } {\left| {f\left( {x + iy} \right)} \right|^p } dy)^s dx \leqq \varrho \left( u \right), u > 0,} $$ где?(u) — функция опред еленного роста.
Результаты работы су щественно обобщают т еорему Пэли—Винера о параме трическом представлений класс аH 2 на полуплоскости.  相似文献   

2.
We study the behavior of the best approximationsE n (?) p of entire transcendental functions ?(z) of the order ρ=∞ by polynomials of at mostn th degree in the metric of the Banach space E′p(Ω) of functions /tf(z) analytic in a bounded simply connected domain Ω with rectifiable Jordan boundary and such that $$\left\| f \right\|_{E'_p } = \left\{ {\iint_\Omega {\left| {f\left( z \right)} \right|^p }dxdy} \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}}< \infty $$ . In particular, we describe the relationship between the best approximationsE n (?)p and theq-order andq-type of the function ?(z).  相似文献   

3.
пУстьE — ИжМЕРИМОЕ пО лЕБЕгУ ОгРАНИЧЕННОЕ МНОжЕстВО пОлОжИтЕльНОИ плОЩА ДИ mes2 E кОМплЕксНОИ плОск ОстИ с. кАк ОБыЧНО, пРИp≧1 ОБОжНАЧИМ ЧЕРЕжL p (E) БА НАхОВО пРОстРАНстВО ИжМЕРИ Мых пО лЕБЕгУ НАE кОМплЕксНОжНАЧНых Ф УНкцИИf с сУММИРУЕМО Иp—стЕпЕНьУ Их МОДУль И ОБыЧНОИ НОРМОИ \(\left\| \cdot \right\|_p = \left\| \cdot \right\|_{L_p (E)}\) . ЧЕР ЕжL p R n (f,E) ОБОжНАЧИМ НАИМЕН ьшЕЕ УклОНЕНИЕf?L p (E) От РАц ИОНАльНых ФУНкцИИ ст ЕпЕНИ ≦n кОМплЕксНОгО пЕРЕМЕ ННОгОz пО НОРМЕ ∥ · ∥. пОлОжИМf(z)=0 Дльz?¯CE,E δ δ-ОкРЕстНОсть МНО жЕстВАE (δ>0), И $$\omega _p (\delta ,f) = \mathop {\sup {\mathbf{ }}}\limits_{\left| h \right|< \delta } \{ \int\limits_{E_\sigma } {\int {{\mathbf{ }}|f(z + h) - f(z)|^p } d\sigma } \} ^{1/p} .$$ тЕОРЕМА.пУсть 1≦p<2,f?L p (E),n≧4.тОгДА $$\begin{array}{*{20}c} {L^p R_n (f,E) \leqq 12\omega _p \left( {\frac{{\delta + \ln n}}{{\sqrt n }},f} \right){\mathbf{ }}npu{\mathbf{ }}p = 1,} \\ {L^p R_n (f,E) \leqq \frac{{24}}{{(p - 1)(2 - p)}}\omega _p (n^{(p - 2)/2p} ,f){\mathbf{ }}npu{\mathbf{ }}1< p< 2,} \\ {L^1 R_n (\bar z,[0,1] \times [0,1]) \geqq \frac{1}{{32\sqrt n }}.} \\ \end{array} $$ .  相似文献   

4.
The following result is proved: Letp>0,a>?1. Suppose thatG is a measurable subset ofB, the unit ball in ? N , for which there exists a positive constantA 1, so that $$\int\limits_B {\left( {1 - \left| x \right|} \right)^a \left| {f(x)} \right|^p dm \leqslant A_1 } \int\limits_G {\left( {1 - \left| x \right|} \right)^a \left| {f(x)} \right|^p dm}$$ for each function that is harmonic inB and for which the left-hand side of the above inequality is finite. Then there is a positive constantA 2 so that for each ballK with center on ?B, $$m\left( {K \cap B} \right) \leqslant A_2 m\left( {K \cap G} \right).$$ Herem denotes Lebesgue measure in ? N . This result answers a question left open byDan Luecking [2].  相似文献   

5.
LetP(z) be a polynomial of degreen which does not vanish in the disk |z|<k. It has been proved that for eachp>0 andk≥1, $$\begin{gathered} \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {P^{(s)} (e^{i\theta } )} \right|^p d\theta } } \right\}^{1/p} \leqslant n(n - 1) \cdots (n - s + 1) B_p \hfill \\ \times \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {P(e^{i\theta } )} \right|^p d\theta } } \right\}^{1/p} , \hfill \\ \end{gathered} $$ where $B_p = \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {k^s + e^{i\alpha } } \right|^p d\alpha } } \right\}^{ - 1/p} $ andP (s)(z) is thesth derivative ofP(z). This result generalizes well-known inequality due to De Bruijn. Asp→∞, it gives an inequality due to Govil and Rahman which as a special case gives a result conjectured by Erdös and first proved by Lax.  相似文献   

6.
We obtain conditions for the convergence in the spaces L p [0, 1], 1 ≤ p < ∞, of biorthogonal series of the form $$ f = \sum\limits_{n = 0}^\infty {(f,\psi _n )\phi _n } $$ in the system {? n } n≥0 of contractions and translations of a function ?. The proposed conditions are stated with regard to the fact that the functions belong to the space $ \mathfrak{L}^p $ of absolutely bundleconvergent Fourier-Haar series with norm $$ \left\| f \right\|_p^ * = \left| {f,\chi _0 } \right| + \sum\limits_{k = 0}^\infty {2^{k({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p})} } \left( {\sum\limits_{n = 2^k }^{2^{k + 1} - 1} {\left| {f,\chi _n } \right|^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where (f n ), n = 0, 1, ..., are the Fourier coefficients of a function f ? L p [0, 1] in the Haar system {χ n } n≥0. In particular, we present conditions for the system {? n } n≥0 of contractions and translations of a function ? to be a basis for the spaces L p [0, 1] and $ \mathfrak{L}^p $ .  相似文献   

7.
Пустьl 1 иl 2 — неотрицательные убывающие функции на (0, ∞). Допустим, что $$\int\limits_0^\infty {S^{n_i - 1} l_i (S)\left( {1 + \log + \frac{1}{{S^{n_i } l_i (S)}}} \right)dS}< \infty ,$$ , гдеn 1 иn 2 — натуральные числа. Тогда для каждой функции \(f \in L^1 (R^{n_1 + n_2 } )\) при почти всех (x0, у0) мы имеем $$\mathop {\lim }\limits_{\lambda \to \infty } \lambda ^{n_1 + n_2 } \int\limits_{R^{n_1 } } {\int\limits_{R^{n_2 } } {l_1 } } (\lambda |x|)l_2 (\lambda |y|)f(x_0 - x,y_0 - y)dx dy = f(x_0 ,y_0 )\int\limits_{R^{n_1 } } {\int\limits_{R^{n_2 } } {l_i (|x|)l_2 } } (|y|)dx dy.$$   相似文献   

8.
В статье изучается по ведение суммы лакуна рного тригонометрическог о ряда при приближени и к некоторой фиксиров анной произвольной т очке. Первая половина рабо ты посвящена изложен ию метода исследования локаль ных свойств суммы лакунарного ря да, разработанного ав тором. Вторая половина рабо ты посвящена приложе ниям этого метода. Здесь в частно сти, получаются необходи мые и достаточные усл овия для интегрируемости сум мы лакунарного ряда с весом при широк их условиях на вес. При ведем соответствующий рез ультат. Пусть?р(x) — сумма ряда \(a + \sum\limits_{n = 1}^\infty {a_n \cos (\lambda _n x + \psi _n )} \) , гдеа, а n ,λ n ,ψ n — действительные числа,εa n /2 <∞,a n ≧0,λ n >0 приn≧1 и \(\mathop {\inf }\limits_{n \geqq 1} \lambda _{n + 1} /\lambda _n > 1\) . При этих условиях функция?(х) определена почти всю ду. Пустьр>0 иω(х) — положительная неуб ывающая функция, определенная при все хх>0, которая при некот оромC>0 удовлетворяет услов ию:ω(2x)≦ ≦Cω(х) при всехх>0. Тогда имеет место Теорема. Для того, чтоб ы интеграл \(\int\limits_{ + 0} {|\varphi (x)|^p \frac{{dx}}{{\omega (x)}}} \) сходился, необходимо и достато чно, чтобы сходились все р яды $$\begin{gathered} \sum\limits_{n = 1}^\infty {D_n (\sum\limits_{k = n}^\infty {a_k^2 } )^{p/2} ,} \sum\limits_{n = 2}^\infty {D_n |a_n + \sum\limits_{k = 1}^{n - 1} {a_k \cos } \psi _k |^p ,} \hfill \\ \sum\limits_{n = 2}^\infty {D_n (pj)|\sum\limits_{k = 1}^{n - 1} {a_k \lambda _k^j \cos (\psi _k + \pi j/2)} |^p ,} j = 1,2,..., \hfill \\ \end{gathered} $$ , где $$D_n = \int\limits_{I_n } {\frac{{dx}}{{\omega (x)}},} D_n (pj) = \int\limits_{I_n } {\frac{{x^{pj} dx}}{{\omega (x)}},} a I_n = [\pi \lambda _n^{ - 1} ,\pi \lambda _{n - 1}^{ - 1} ]$$   相似文献   

9.
LetF(b, M) (b ≠ 0 complex,M>1/2) denote the class of functionsf(z) =z + Σ n=2 a n z n analytic in U={z:|z|<1} which satisfy for fixedM, f(z)/z ≠ 0 inU and \(\left| {\frac{{b - 1 + \left[ {zf'{{\left( z \right)} \mathord{\left/ {\vphantom {{\left( z \right)} {f\left( z \right)}}} \right. \kern-0em} {f\left( z \right)}}} \right]}}{b} - M} \right|< M, z \in U\) . In this note we obtain various representations for functions inF(b, M). We maximize |a3=μa 2 2 | over the classF(b, M). Also sharp coefficient bounds are established for functions inF(b, M). We also obtain the sharp radius of starlikeness of the classF(b, M).  相似文献   

10.
Let Ω be an arbitrary open set in R n , and let σ(x) and g i (x), i = 1, 2, ..., n, be positive functions in Ω. We prove a embedding theorem of different metrics for the spaces W p r (Ω, σ, $ \vec g $ ), where rN, p ≥ 1, and $ \vec g $ (x) = (g 1(x), g 2(x), ..., g n (x)), with the norm $$ \left\| {u;W_p^r (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\left\| {u;L_{p,r}^r (\Omega ;\sigma ,\vec g)} \right\|^p + \left\| {u;L_{p,r}^0 (\Omega ;\sigma ,\vec g)} \right\|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where $$ \left\| {u;L_{p,r}^m (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\sum\limits_{\left| k \right| = m} {\int\limits_\Omega {(\sigma (x)g_1^{k_1 - r} (x)g_2^{k_2 - r} (x) \cdots g_n^{k_n - r} (x)\left| {u^{(k)} (x)} \right|)^p dx} } } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ We use this theorem to prove the existence and uniqueness of a minimizing element U(x) ∈ W p r (Ω, σ, $ \vec g $ ) for the functional $$ \Phi (u) = \sum\limits_{\left| k \right| \leqslant r} {\frac{1} {{p_k }}\int\limits_\Omega {a_k (x)} \left| {u^{(k)} (x)} \right|^{p_k } } dx - \left\langle {F,u} \right\rangle , $$ where F is a given functional. We show that the function U(x) is a generalized solution of the corresponding nonlinear differential equation. For the case in which Ω is bounded, we study the differential properties of the generalized solution depending on the smoothness of the coefficients and the right-hand side of the equation.  相似文献   

11.
The paper introduces singular integral operators of a new type defined in the space L p with the weight function on the complex plane. For these operators, norm estimates are derived. Namely, if V is a complex-valued function on the complex plane satisfying the condition |V(z) ? V(??)| ?? w|z ? ??| and F is an entire function, then we put $$P_F^* f(z) = \mathop {\sup }\limits_{\varepsilon > 0} \left| {\int\limits_{\left| {\zeta - z} \right| > \varepsilon } {F\left( {\frac{{V(\zeta ) - V(z)}} {{\zeta - z}}} \right)\frac{{f(\zeta )}} {{\left( {\zeta - z} \right)^2 }}d\sigma (\zeta )} } \right|.$$ It is shown that if the weight function ?? is a Muckenhoupt A p weight for 1 < p < ??, then $$\left\| {P_F^* f} \right\|_{p,\omega } \leqslant C(F,w,p)\left\| f \right\|_{p,\omega } .$$ .  相似文献   

12.
We study regularity results for solutions uHW 1,p (Ω) to the obstacle problem $$\int_\Omega \mathcal{A} \left( {x,\nabla _{\mathbb{H}^u } } \right)\nabla _\mathbb{H} \left( {v - u} \right)dx \geqslant 0 \forall v \in \mathcal{K}_{\psi ,u} \left( \Omega \right)$$ such that u ? ψ a.e. in Ω, where $xxx$ , in Heisenberg groups ? n . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. $$\begin{gathered} T\psi \in HW_{loc}^{1,p} \left( \Omega \right) \Rightarrow Tu \in L_{loc}^p \left( \Omega \right), \hfill \\ \left| {\nabla _{\mathbb{H}\psi } } \right|^p \in L_{loc}^q \left( \Omega \right) \Rightarrow \left| {\nabla _{\mathbb{H}^u } } \right|^p \in L_{loc}^q \left( \Omega \right), \hfill \\ \end{gathered}$$ where 2 < p < 4, q > 1.  相似文献   

13.
Изучаются ряды Риман а, рассматривавшиеся ранее в работах [1] и [2]. Пустьa n (n=1, 2,…) — последов ательность комплекс ных чисел иr n =a n +a 2n +. Предполо жим, чтоΣ¦a n ¦<∞. Тогда выпо лняются неравенства $$\begin{array}{*{20}c} {\sum\limits_n {\left| {r_n } \right| \leqq } \sum\limits_n {\left| {a_n } \right|} d(n),} & {\sum\limits_n {\left| {a_n } \right|} } \\ \end{array} \leqq \sum\limits_n {\left| {r_n } \right|2^{\omega (n)} ,} $$ гдеd(n) иω(n) — соответств енно число делителей и число простых делителейn. Е сли $$\begin{array}{*{20}c} {F(z) = \sum\limits_n {a_n z^n ,} } & {p_n (z) = \sum\limits_{s|n} {\mu \left( {\frac{n}{s}} \right)z^s ,} } \\ \end{array} $$ то \(F(z) = \sum\limits_n {r_n p_n (z)} \) для ¦z¦<1. В статье с одержатся некоторые результаты о сходимо сти рядов РиманаΣt n p n (z) на окружно сти ¦z¦=1. Например, если числаt n неотрицатель ны, монотонно убывают и \(\sum\limits_n {t_n< \infty } \) , то ряд равн омерно сходится для ¦z¦=1. Сформулированы неко торые новые задачи.  相似文献   

14.
Пустьq∈(1, 2) иL=(q?1)?1. Дляz∈[0,L] обозначимδ(z) функцию, для которойδ(z)=1, еслиz≧1/q иδ(z)=0, еслиz<1/q. Пустьy(z) определяется из урав ненияz= =δ(z)q ?1+y(z)q ?1, и регулярное представление \(\mathop \Sigma \limits_{n = 1}^\infty \varepsilon _n \left( x \right)q^{ - n} \) аргументах определя ется из следующих соотношен ий: $$x = x_0 , \varepsilon _n \left( x \right) = \delta \left( {x_n } \right), x_{n + 1} = y\left( {x_n } \right).$$ ФункцияF: [0,L]→C называе тся аддитивной, если о на представляется в вид е $$F\left( x \right) = \mathop \Sigma \limits_{n = 1}^\infty \varepsilon _n \left( x \right)a_n ,$$ где ε ¦a n ¦<∞. «Бесконеч ное» представление 1=εl i q ?1 числа 1 определяется с ледующим образом: еслие n (1)=1 для б есконечно многихп, т оl n =ε n (1) (n=1, 2, ...); если ? максим альный индекс, для которогоε s (1)=1, то $$l_{ks + 1} = \left\{ \begin{gathered} \varepsilon _i \left( 1 \right) \left( {k = 0, 1, 2, ...; i = 1, ..., s - 1} \right) \hfill \\ 0 \left( {i = 0; k = 1, 2, ...} \right). \hfill \\ \end{gathered} \right.$$ В более ранней работе, опубликованной в это м журнале, авторы доказали, что а ддитивная функция является неп рерывной на отрезке [0,L] тогда и только тогда, когда ра венство $$a_n = \mathop \Sigma \limits_{i = 1}^\infty l_i a_{n + 1} $$ выполняется для всехnN. В настоящей работе ра ссматриваются непре рывные функции для которых в ыполняются дополнительные усло вия видаa n =O(q ??n ) (0a n ≧0. Анализируются их свя зи с корнями функцииG(z)=1 +ε l i z i . Доказы вается, что непрерывн ая аддитивная функция и ли вляется линейной, или нигде не дифференцир уема на отрезке [0,L].  相似文献   

15.
LetH(α) denote the class of regular functionsf(z) normalized so thatf(0)=0 andf′(0)=1 and satisfying in the unit discE the condition $$\operatorname{Re} \left\{ {(1 - \alpha )f'(z) + \alpha (1 + zf''(z)/f'(z))} \right\} > 0$$ for fixed α. It is known thatH(0) is a particular class NW of close-to-convex univalent functions. The authors show the following results:Theorem 1. Letf(z)H(α). Thenf(z)∈NW if α≤0 andzE.Theorem 2. Letf(z)∈NW. Thenf(z)H(α) in |z|=r<r α where i) \(r_\alpha = (1 + \sqrt {2\alpha } )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}\) , α≥0 and ii) \(r_\alpha = \sqrt {\frac{{1 - \alpha - \sqrt {\alpha (\alpha - 1)} }}{{1 - \alpha }}}\) , α<0. All results are sharp.Theorem 3. Iff(z)=z+a 2 z 2+a 3 z 3+... is inH(α) and if μ is an arbitrary complex number, then $$\left| {1 + \alpha } \right|\left| {a_3 - \mu a_2^2 } \right| \leqslant ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})\max \left[ {1,\left| {1 + 2\alpha - {3 \mathord{\left/ {\vphantom {3 {2\mu }}} \right. \kern-\nulldelimiterspace} {2\mu }}(1 + \alpha )} \right|} \right].$$ .  相似文献   

16.
Статья посвящена обо бщению неравенства Меньшова-Радемахера. Условие ортогональн ости заменяется усло вием (4), т.е. предполагается, что с уществует функционалh, зависящ ий от совместного рас пределения случайных величинX m+1 , Х m+2 ,..., Х m+n , который субаддити вен в смысле условия (5) и удовлетворяет услов ию (4). Из этих допущений выводится неравенство вида (6). В ч астном случае Ф(х)=¦х¦p(р≧1) в нер авенстве (6) мы имеемB Φ (y)=y p . Во второй части стать и из указанных нераве нств выводятся некоторые усиленные законы больших чисел. Типичн ым результатом являе тся следующий. Пусть р>1 и x 1, Х2,... —после довательность случа йных величин. Если для всех m≧0, n≧1 выполнены неравенс тва $$E\left( {\left| {\mathop \Sigma \limits_{i = m + 1}^{m + n} X_i } \right|^p } \right) \leqq h(F_{m,n} )$$ где функционал h(F m,n )удо влетворяет условию (5) u $$h(F_{0,n} ) = O\left( {\frac{{n^p }}{{(\log n)^{p + 1} (\log \log n)^2 }}} \right)(n \to \infty )$$ , mo $$P(S_n /n \to 0) = 1$$ .  相似文献   

17.
18.
19.
In a bounded simple connected region G ? ?3 we consider the equation $$L\left[ u \right]: = k\left( z \right)\left( {u_{xx} + u_{yy} } \right) + u_{zz} + d\left( {x,y,z} \right)u = f\left( {x,y,z} \right)$$ where k(z)? 0 whenever z ? 0.G is surrounded forz≥0 by a smooth surface Γ0 with S:=Γ0 ? {(x,y,z)|=0} and forz<0 by the characteristic \(\Gamma _2 :---(x^2 + y^2 )^{{\textstyle{1 \over 2}}} + \int\limits_z^0 {(---k(t))^{{\textstyle{1 \over 2}}} dt = 0} \) and a smooth surface Γ1 which intersect the planez=0 inS and where the outer normal n=(nx, ny, nz) fulfills \(k(z)(n_x^2 + n_y^2 ) + n_z^2 |_{\Gamma _1 } > 0\) . Under conditions on Γ1 and the coefficientsk(z), d(x,y,z) we prove the existence of weak solutions for the boundary value problemL[u]=f inG with \(u|_{\Gamma _0 \cup \Gamma _1 } = 0\) . The uniqueness of the classical solution for this problem was proved in [1].  相似文献   

20.
ПустьS n (f, x) — суммы Фурье периодической сумми руемой функцииf(x). Доказано, что если фун кцияФ(u), определенная, непрерывная и выпукл ая вверх для u≧0 (Ф(0)=0), удовлетворяет ус ловию (1) $$\int\limits_{ + 0} {\frac{{du}}{{\Phi (u)}}< \infty ,} $$ то имеет место следую щее вложение классов функций (2) $$S(\Phi ) = \left\{ {f:\mathop {\max }\limits_x \sum\limits_{n = o}^\infty \Phi (\left| {f(x) - S_n (fx)} \right|)< \infty } \right\} \subset Lip1,$$ и, более того, при услов ии (1) все функции из кла ссаS(Ф) непрерывно дифферен цируемы, а их производные имеют равномерно сходящие ся ряды Фурье. Установлено также, чт о если функция Ф удовл етворяет условию lim supФ(u/2)/Ф(u)<1, то условие (1) является н е только достаточным, но и необходимым для влож ения (2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号