首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the problem of minimizing a function of several variables subject to inequality constraints is considered. The method employed is the sequential gradient-restoration algorithm with complete restoration. In this algorithm, the inequality constraints are transformed into equality constraints by suitable transformations. A modification of the sequential gradient-restoration algorithm, designed to improve the convergence characteristics, is presented. It consists of inserting a prerestorative step prior to any iteration of the algorithm. The aim of this prerestorative step is to reduce the constraint violation. Eight numerical examples are presented. They show the considerable beneficial effects associated with the above prerestorative step: on the average, the number of iterations of the modified algorithm is less than 50% of the number of iterations of the standard algorithm. An analogous remark holds for the computer time.  相似文献   

2.
This paper considers the problem of minimizing a functionalI which depends on the statex(t), the controlu(t), and the parameter π. Here,I is a scalar,x ann-vector,u anm-vector, and π ap-vector. At the initial point, the state is prescribed. At the final point, the state and the parameter are required to satisfyq scalar relations. Along the interval of integration, the state, the control, and the parameter are required to satisfyn scalar differential equations. First, the case of a quadratic functional subject to linear constraints is considered, and a conjugate-gradient algorithm is derived. Nominal functionsx(t),u(t), π satisfying all the differential equations and boundary conditions are assumed. Variations Δx(t), δu(t), Δπ are determined so that the value of the functional is decreased. These variations are obtained by minimizing the first-order change of the functional subject to the differential equations, the boundary conditions, and a quadratic constraint on the variations of the control and the parameter. Next, the more general case of a nonquadratic functional subject to nonlinear constraints is considered. The algorithm derived for the linear-quadratic case is employed with one modification: a restoration phase is inserted between any two successive conjugate-gradient phases. In the restoration phase, variations Δx(t), Δu(t), Δπ are determined by requiring the least-square change of the control and the parameter subject to the linearized differential equations and the linearized boundary conditions. Thus, a sequential conjugate-gradient-restoration algorithm is constructed in such a way that the differential equations and the boundary conditions are satisfied at the end of each complete conjugate-gradient-restoration cycle. Several numerical examples illustrating the theory of this paper are given in Part 2 (see Ref. 1). These examples demonstrate the feasibility as well as the rapidity of convergence of the technique developed in this paper. This research was supported by the Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-72-2185. The authors are indebted to Professor A. Miele for stimulating discussions. Formerly, Graduate Studient in Aero-Astronautics, Department of Mechanical and Aerospace Engineering and Materials Science, Rice University, Houston, Texas.  相似文献   

3.
In this paper optimal control problems governed by elliptic semilinear equations and subject to pointwise state constraints are considered. These problems are discretized using finite element methods and a posteriori error estimates are derived assessing the error with respect to the cost functional. These estimates are used to obtain quantitative information on the discretization error as well as for guiding an adaptive algorithm for local mesh refinement. Numerical examples illustrate the behavior of the method.  相似文献   

4.
In this paper we present a computational procedure for minimizing a class ofL 1-functionals subject to conventional as well as functional constraints. The computational procedure is based on the idea of enforced smoothing together with a method of converting the functional constraints into conventional equality constraints. For illustration, two examples are solved using the proposed procedure.  相似文献   

5.
This paper considers optimal control problems involving the minimization of a functional subject to differential constraints, terminal constraints, and a state inequality constraint. The state inequality constraint is of a special type, namely, it is linear in some or all of the components of the state vector.A transformation technique is introduced, by means of which the inequality-constrained problem is converted into an equality-constrained problem involving differential constraints, terminal constraints, and a control equality constraint. The transformation technique takes advantage of the partial linearity of the state inequality constraint so as to yield a transformed problem characterized by a new state vector of minimal size. This concept is important computationally, in that the computer time per iteration increases with the square of the dimension of the state vector.In order to illustrate the advantages of the new transformation technique, several numerical examples are solved by means of the sequential gradient-restoration algorithm for optimal control problems involving nondifferential constraints. The examples show the substantial savings in computer time for convergence, which are associated with the new transformation technique.This research was supported by the Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-76-3075, and by the National Science Foundation, Grant No. MCS-76-21657.  相似文献   

6.
In this paper we are concerned with a posteriori error estimates for the solution of some state constraint optimization problem subject to an elliptic PDE. The solution is obtained using an interior point method combined with a finite element method for the discretization of the problem. We will derive separate estimates for the error in the cost functional introduced by the interior point parameter and by the discretization of the problem. Finally we show numerical examples to illustrate the findings for pointwise state constraints and pointwise constraints on the gradient of the state.  相似文献   

7.
First principles approaches to the protein structure prediction problem must search through an enormous conformational space to identify low-energy, near-native structures. In this paper, we describe the formulation of the tertiary structure prediction problem as a nonlinear constrained minimization problem, where the goal is to minimize the energy of a protein conformation subject to constraints on torsion angles and interatomic distances. The core of the proposed algorithm is a hybrid global optimization method that combines the benefits of the αBB deterministic global optimization approach with conformational space annealing. These global optimization techniques employ a local minimization strategy that combines torsion angle dynamics and rotamer optimization to identify and improve the selection of initial conformations and then applies a sequential quadratic programming approach to further minimize the energy of the protein conformations subject to constraints. The proposed algorithm demonstrates the ability to identify both lower energy protein structures, as well as larger ensembles of low-energy conformations.  相似文献   

8.
提出了求解一类带一般凸约束的复合非光滑优化的信赖域算法 .和通常的信赖域方法不同的是 :该方法在每一步迭代时不是迫使目标函数严格单调递减 ,而是采用非单调策略 .由于光滑函数、逐段光滑函数、凸函数以及它们的复合都是局部Lipschitz函数 ,故本文所提方法是已有的处理同类型问题 ,包括带界约束的非线性最优化问题的方法的一般化 ,从而使得信赖域方法的适用范围扩大了 .同时 ,在一定条件下 ,该算法还是整体收敛的 .数值实验结果表明 :从计算的角度来看 ,非单调策略对高度非线性优化问题的求解非常有效  相似文献   

9.
We study optimal control problems for semilinear elliptic equations subject to control and state inequality constraints. In a first part we consider boundary control problems with either Dirichlet or Neumann conditions. By introducing suitable discretization schemes, the control problem is transcribed into a nonlinear programming problem. It is shown that a recently developed interior point method is able to solve these problems even for high discretizations. Several numerical examples with Dirichlet and Neumann boundary conditions are provided that illustrate the performance of the algorithm for different types of controls including bang-bang and singular controls. The necessary conditions of optimality are checked numerically in the presence of active control and state constraints.  相似文献   

10.
We consider multistage group testing with incomplete identification and unreliability features. The objective is to find a cost‐efficient group testing policy to select a prespecified number of non‐defective items from some population in the presence of false‐positive and false‐negative test results, subject to reliability and other constraints. To confirm the status of tested groups, various sequential retesting procedures are suggested. We also extend the model to include the possibility of inconclusive test results. We derive all relevant cost functionals in analytically closed form. Numerical examples are also given. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we consider the problem of maximizing a non‐linear or linear objective function subject to non‐linear and/or linear constraints. The approach used is an adaptive random search with some non‐random searches built‐in. The algorithm begins with a given point which is replaced by another point if the latter satisfies each of the constraints and results in a bigger functional value. The process of moving from one point to a better point is repeated many times. The value of each of the coordinates of the next point is determined by one of several ways; for example, a coordinate is sometimes forced to have the same value as the value of the corresponding coordinate of the current feasible point. In this algorithm, a candidate point receives no further computational considerations as soon as it is found to be unfeasible; this makes the algorithm general. Computer programs illustrating the details of the new algorithm are given and computational results of two numerical test problems from the literature are presented. Optimality was reached in each of these two problems.  相似文献   

12.
In Stolyar (Queueing Systems 50 (2005) 401–457) a dynamic control strategy, called greedy primal-dual (GPD) algorithm, was introduced for the problem of maximizing queueing network utility subject to stability of the queues, and was proved to be (asymptotically) optimal. (The network utility is a concave function of the average rates at which the network generates several “commodities.”) Underlying the control problem of Stolyar (Queueing Systems 50 (2005) 401–457) is a convex optimization problem subject to a set of linear constraints. In this paper we introduce a generalized GPD algorithm, which applies to the network control problem with additional convex (possibly non-linear) constraints on the average commodity rates. The underlying optimization problem in this case is a convex problem subject to convex constraints. We prove asymptotic optimality of the generalized GPD algorithm. We illustrate key features and applications of the algorithm on simple examples. AMS Subject Classifications: 90B15 · 90C25 · 60K25 · 68M12  相似文献   

13.
This paper presents an active-set algorithm for large-scale optimization that occupies the middle ground between sequential quadratic programming and sequential linear-quadratic programming methods. It consists of two phases. The algorithm first minimizes a piecewise linear approximation of the Lagrangian, subject to a linearization of the constraints, to determine a working set. Then, an equality constrained subproblem based on this working set and using second derivative information is solved in order to promote fast convergence. A study of the local and global convergence properties of the algorithm highlights the importance of the placement of the interpolation points that determine the piecewise linear model of the Lagrangian.  相似文献   

14.
This paper presents some convex stochastic programming models for single and multi-period inventory control problems where the market demand is random and order quantities need to be decided before demand is realized. Both models minimize the expected losses subject to risk aversion constraints expressed through Value at Risk (VaR) and Conditional Value at Risk (CVaR) as risk measures. A sample average approximation method is proposed for solving the models and convergence analysis of optimal solutions of the sample average approximation problem is presented. Finally, some numerical examples are given to illustrate the convergence of the algorithm.  相似文献   

15.
This paper presents a sequential quadratic programming algorithm for computing a stationary point of a mathematical program with linear complementarity constraints. The algorithm is based on a reformulation of the complementarity condition as a system of semismooth equations by means of Fischer-Burmeister functional, combined with a classical penalty function method for solving constrained optimization problems. Global convergence of the algorithm is established under appropriate assumptions. Some preliminary computational results are reported.  相似文献   

16.
In this paper, we propose a new nonmonotonic interior point backtracking strategy to modify the reduced projective affine scaling trust region algorithm for solving optimization subject to nonlinear equality and linear inequality constraints. The general full trust region subproblem for solving the nonlinear equality and linear inequality constrained optimization is decomposed to a pair of trust region subproblems in horizontal and vertical subspaces of linearize equality constraints and extended affine scaling equality constraints. The horizontal subproblem in the proposed algorithm is defined by minimizing a quadratic projective reduced Hessian function subject only to an ellipsoidal trust region constraint in a null subspace of the tangential space, while the vertical subproblem is also defined by the least squares subproblem subject only to an ellipsoidal trust region constraint. By introducing the Fletcher's penalty function as the merit function, trust region strategy with interior point backtracking technique will switch to strictly feasible interior point step generated by a component direction of the two trust region subproblems. The global convergence of the proposed algorithm while maintaining fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some high nonlinear function conditioned cases.  相似文献   

17.
We address a problem of setting reorder intervals (time supplies) of a population of items, subject to a restricted set of possible intervals as well as a limit on the total number of replenishments per unit time, both important practical constraints. We provide a dynamic programming formulation for obtaining the optimal solution. In addition, a simple and efficient heuristic algorithm has been developed. Computational experiments show that the performance of the heuristic is excellent based on a set of realistic examples.  相似文献   

18.
A dynamic programming method is presented for solving constrained, discrete-time, optimal control problems. The method is based on an efficient algorithm for solving the subproblems of sequential quadratic programming. By using an interior-point method to accommodate inequality constraints, a modification of an existing algorithm for equality constrained problems can be used iteratively to solve the subproblems. Two test problems and two application problems are presented. The application examples include a rest-to-rest maneuver of a flexible structure and a constrained brachistochrone problem.  相似文献   

19.
In this paper, epsilon and Ritz methods are applied for solving a general class of fractional constrained optimization problems. The goal is to minimize a functional subject to a number of constraints. The functional and constraints can have multiple dependent variables, multiorder fractional derivatives, and a group of initial and boundary conditions. The fractional derivative in the problem is in the Caputo sense. The constrained optimization problems include isoperimetric fractional variational problems (IFVPs) and fractional optimal control problems (FOCPs). In the presented approach, first by implementing epsilon method, we transform the given constrained optimization problem into an unconstrained problem, then by applying Ritz method and polynomial basis functions, we reduce the optimization problem to the problem of optimizing a real value function. The choice of polynomial basis functions provides the method with such a flexibility that initial and boundary conditions can be easily imposed. The convergence of the method is analytically studied and some illustrative examples including IFVPs and FOCPs are presented to demonstrate validity and applicability of the new technique.  相似文献   

20.
This paper considers the numerical solution of optimal control problems involving a functionalI subject to differential constraints, nondifferential constraints, and terminal constraints. The problem is to find the statex(t), the controlu(t), and the parameter π so that the functional is minimized, while the constraints are satisfied to a predetermined accuracy. A modified quasilinearization algorithm is developed. Its main property is the descent property in the performance indexR, the cumulative error in the constraints and the optimality conditions. Modified quasilinearization differs from ordinary quasilinearization because of the inclusion of the scaling factor (or stepsize) α in the system of variations. The stepsize is determined by a one-dimensional search on the performance indexR. Since the first variation δR is negative, the decrease inR is guaranteed if α is sufficiently small. Convergence to the solution is achieved whenR becomes smaller than some preselected value. In order to start the algorithm, some nominal functionsx(t),u(t), π and nominal multipliers λ(t), ρ(t), μ must be chosen. In a real problem, the selection of the nominal functions can be made on the basis of physical considerations. Concerning the nominal multipliers, no useful guidelines have been available thus far. In this paper, an auxiliary minimization algorithm for selecting the multipliers optimally is presented: the performance indexR is minimized with respect to λ(t), ρ(t), μ. Since the functionalR is quadratically dependent on the multipliers, the resulting variational problem is governed by optimality conditions which are linear and, therefore, can be solved without difficulty. To facilitate the numerical solution on digital computers, the actual time θ is replaced by the normalized timet, defined in such a way that the extremal arc has a normalized time length Δt=1. In this way, variable-time terminal conditions are transformed into fixed-time terminal conditions. The actual time τ at which the terminal boundary is reached is regarded to be a component of the parameter π being optimized. The present general formulation differs from that of Ref. 3 because of the inclusion of the nondifferential constraints to be satisfied everywhere over the interval 0?t?1. Its importance lies in that (i) many optimization problems arise directly in the form considered here, (ii) there are problems involving state equality constraints which can be reduced to the present scheme through suitable transformations, and (iii) there are some problems involving inequality constraints which can be reduced to the present scheme through the introduction of auxiliary variables. Numerical examples are presented for the free-final-time case. These examples demonstrate the feasibility as well as the rapidity of convergence of the technique developed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号