首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes the rapid separation of mulberry anthocyanins; namely, cyanidin‐3‐glucoside and cyanidin‐3‐rutinoside, using high‐performance countercurrent chromatography, and the establishment of a volumetric scale‐up process from semi‐preparative to preparative‐scale. To optimize the separation parameters, biphasic solvent systems composed of tert‐butyl methyl ether/n‐butanol/acetonitrile/0.01% trifluoroacetic acid, flow rate, sample amount and rotational speed were evaluated for the semi‐preparative‐scale high‐performance countercurrent chromatography. The optimized semi‐preparative‐scale high‐performance countercurrent chromatography parameters (tert‐butyl methyl ether/n‐butanol/acetonitrile/0.01% trifluoroacetic acid, 1:3:1:5, v/v; flow rate, 4.0 mL/min; sample amount, 200–1000 mg; rotational speed, 1600 rpm) were transferred directly to a preparative‐scale (tert‐butyl methyl ether/n‐butanol/acetonitrile/0.01% trifluoroacetic acid, 1:3:1:5, v/v; flow rate, 28 mL/min; sample amount, 5.0–10.0 g; rotational speed, 1400 rpm) to achieve separation results identical to cyanidin‐3‐glucoside and cyanidin‐3‐rutinoside. The separation of mulberry anthocyanins using semi‐preparative high‐performance countercurrent chromatography and its volumetric scale‐up to preparative‐scale was addressed for the first time in this report.  相似文献   

2.
The abundant production of methyl tert‐butyl ether (MTBE) and its widespread use have led to an increase in the potential for human exposure. This work described a simple, fast, sensitive, reliable and low‐cost method for the simultaneous measurement of MTBE and its metabolite, tert‐butyl alcohol (TBA) in human serum by headspace solid‐phase microextraction gas chromatography–mass spectrometry. Extraction conditions were optimized and 40 °C, 10 min, 250 rpm and 0.3 g NaCl for a 1 mL sample were the optimal conditions. This method showed good analytical performance in terms of sensitivity with limits of detection in serum (1 mL) of 0.03 µg/L for MTBE and 0.05 µg/L for TBA, accuracy (mean recovery values) from 75.8% to 85.8%, precision (relative standard deviations) <10% and sample stability (biodegradation) <10% after 28 days. A verification experiment proved the reproducibility and stability of this method as well. Finally the method was used to detect 212 specimens, and the internal dose levels for MTBE in human serum were presented in China. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
An efficient analytical method called ionic‐liquid‐based ultrasound‐assisted in situ solvent formation microextraction followed by high‐performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1‐butyl‐3‐methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate) to a sample solution containing an ion‐pairing agent during microextraction. The analyte was extracted into the ionic liquid phase while the microextraction solvent was dispersed throughout the sample by utilizing ultrasound. The sample was then centrifuged, and the extracting phase retracted into the microsyringe and injected to liquid chromatography. After optimization, the calibration curve showed linearity in the range of 2–750 ng/mL with the regression coefficient corresponding to 0.998. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.5 and 2 ng/mL, respectively. A reasonable relative recovery range of 90–96.7% and satisfactory intra‐assay (4.8–5.1%, n = 6) and interassay (5.0–5.6%, n = 9) precision along with a substantial sample clean‐up demonstrated good performance of the procedure. It was applied for the determination of atenolol in human plasma after oral administration and some pharmacokinetic data were obtained.  相似文献   

4.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

5.
A series of well‐defined amphiphilic graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate)] (PPEGMEMA) side chains were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single‐electron‐transfer living radical polymerization (SET‐LRP) without any polymeric functional group transformation. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromoisobutanoyloxy)methyl)acrylate (tBBIBMA), was first prepared, which can be homopolymerized by RAFT to give a well‐defined PtBBIBMA homopolymer with a narrow molecular weight distribution (Mw/Mn = 1.15). This homopolymer with pendant Br initiation group in every repeating unit initiated SET‐LRP of PEGMEMA at 45 °C using CuBr/dHbpy as catalytic system to afford well‐defined PtBBIBMA‐g‐PPEGMEMA graft copolymers via the grafting‐from strategy. The self‐assembly behavior of the obtained graft copolymers in aqueous media was investigated by fluorescence spectroscopy and TEM. These copolymers were found to be stimuli‐responsive to both temperature and ions. Finally, poly(acrylic acid)‐g‐PPEGMEMA double hydrophilic graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PPEGMEMA side chains kept inert. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

7.
A bis(ether amine) containing the ortho‐substituted phenylene unit and pendant tert‐butyl group, 1,2‐bis(4‐aminophenoxy)‐4‐tert‐butylbenzene, was synthesized and used as a monomer to prepare polyimides with six commercial dianhydrides via a conventional two‐stage procedure. The intermediate poly(amic acid)s had inherent viscosities of 0.78–1.44 dL/g, and most of them could be thermally converted into transparent, flexible, and tough polyimide films. The inherent viscosities of the resulting polyimides were in the range of 0.46–0.87 dL/g. All polyimides were noncrystalline, and most of them showed excellent solubility in polar organic solvents. The glass‐transition temperatures of these polyimides were in the range of 222–259 °C in differential scanning calorimetry and 212–282 °C in thermomechanicl analysis. These polyimides showed no appreciable decomposition up to 500 °C in thermogravimetric analysis in air or nitrogen. A comparative study of the properties with the corresponding polyimides without pendant tert‐butyl groups derived from 1,2‐bis(4‐aminophenoxy)benzene is also presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1551–1559, 2000  相似文献   

8.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
A rapid and sensitive analytical method has been developed for trace analysis of methyl tert‐butyl ether (MTBE) in water samples using dispersive liquid‐liquid microextraction and gas chromatography with flame ionization detection. Factors relevant to the microextraction efficiency, such as the kind of extraction solvent, the disperser solvent and their volumes, the effect of salt, sample solution temperature and the extraction time were investigated and optimized. Under the optimal conditions the linear dynamic range of MTBE was from 0.2 to 25.0 μg L?1 with a correlation coefficient of 0.9981 and a detection limit of 0.1 μg L?1. The relative standard deviation (RSD%) was less than 5.1% (n = 3) and the recovery values were in the range of 97.8 ± 0.9%. Finally, the proposed method was successfully applied for the analysis of MTBE in aqueous samples.  相似文献   

10.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

11.
Well‐defined macromonomers of poly(ethylene oxide) and poly(tert‐butyl methacrylate) were obtained by anionic polymerization induced directly by the carbanion issued from 2‐methyl‐2‐oxazoline. When ethylene oxide was added to this carbanion with lithium as the counterion, a new compound able to initiate the polymerization of ε‐caprolactone in an anionically coordinated way was synthesized, and this led to well‐defined poly(ε‐caprolactone) macromonomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2440–2447, 2005  相似文献   

12.
The polymerization of isobutyl vinyl ether (IBVE) and tert‐butyl vinyl ether (TBVE) was carried out with metallocene and nonmetallocene catalysts, and the stereoregularity of the formed polymers was examined with 13C NMR spectroscopy. IBVE afforded polymers with 63–68% dyad isotacticity by polymerization with mixtures of metallocene catalysts and methyl aluminoxane as a cocatalyst in toluene as a solvent. However, TBVE yielded polymers with 47–52% dyad isotacticity (21–28% triad isotacticity) under the same conditions, the isotacticity being lower than that of poly(isobutyl vinyl ether) (PIBVE). Nonmetallocene catalysts, including Ti, Zr, and Hf complexes with two phenoxy imine chelate ligands, provided PIBVE and poly(tert‐butyl vinyl ether) with 63–68 and 45–51% dyad isotacticity, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3938–3943, 2002  相似文献   

13.
We developed a CE and ultrasound‐assisted temperature‐controlled ionic liquid emulsification microextraction method for the determination of four parabens (methyl paraben, ethyl paraben, propyl paraben, and butyl paraben) in personal care products including mouthwash and toning lotion. In the proposed extraction procedure, ionic liquid (IL, 1‐octyl‐3‐methylimidazolium hexafluorophosphate) was used as extraction solvent, moreover, no disperser solvent was needed. Parameters affecting the extraction efficiency including volume of IL, heating temperature, ultrasonic time, extraction time, sample pH, ionic strength, and centrifugation time were optimized. Under the optimized conditions, the method was found to be linear over the range of 3–500 ng/mL with coefficient of determination (R2) in the range of 0.9990–0.9998. The LODs and LOQs for the four parabens were 0.45–0.72 ng/mL and 1.50–2.40 ng/mL, respectively. Intraday and interday precisions (RSDs, n = 5) were in the range of 5.4–6.8% and 7.0–8.7%, respectively. The recoveries of parabens at different spiked levels ranged from 71.9 to 119.2% with RSDs less than 9.5%.  相似文献   

14.
A series of well‐defined amphiphilic graft copolymers, containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(butyl acrylate) side chains, were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) without any postpolymerization functionality modification followed by selective acidic hydrolysis of poly(tert‐butyl acrylate) backbone. tert‐Butyl 2‐((2‐bromopropanoyloxy)methyl)‐acrylate was first homopolymerized or copolymerized with tert‐butyl acrylate by RAFT in a controlled way to give ATRP‐initiation‐group‐containing homopolymers and copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) and their reactivity ratios were determined by Fineman‐Ross and Kelen‐Tudos methods, respectively. The density of ATRP initiation group can be regulated by the feed ratio of the comonomers. Next, ATRP of butyl acrylate was directly initiated by these macroinitiators to synthesize well‐defined poly(tert‐butyl acrylate)‐g‐poly(butyl acrylate) graft copolymers with controlled grafting densities via the grafting‐from strategy. PtBA‐based backbone was selectively hydrolyzed in acidic environment without affecting PBA side chains to provide poly(acrylic acid)‐g‐poly(butyl acrylate) amphiphilic graft copolymers. Fluorescence probe technique was used to determine the critical micelle concentrations in aqueous media and micellar morphologies are found to be spheres visualized by TEM. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2622–2630, 2010  相似文献   

15.
Boldine is a potential anti‐inflammatory agent found in several different plants. Published bioanalytical methods using HPLC with ultraviolet and fluorescent detection lacked enough sensitivity and required tedious sample preparation procedures. Herein, we describe the development of a novel ultra‐high performance LC with MS/MS for determination of boldine in plasma. Boldine in plasma was recovered by liquid–liquid extraction using 1 mL of methyl tert‐butyl ether. Chromatographic separation was performed on a C18 column at 45°C, with a gradient elution consisting of acetonitrile and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. The detection was performed on an electrospray triple‐quadrupole MS/MS by positive ion multiple reaction monitoring mode. Good linearity (r2 > 0.9926) was achieved in a concentration range of 2.555–2555 ng/mL with a lower limit of quantification of 2.555 ng/mL for boldine. The intra‐ and inter‐day precisions of the assay were 1.2–6.0 and 1.8–7.4% relative standard deviation with an accuracy of ?6.0–8.0% relative error. This newly developed method was successfully applied to a single low‐dose pharmacokinetic study in rats and was demonstrated to be simpler and more sensitive than the published methods, allowing boldine quantification in reduced plasma volume. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The anionic ring‐opening polymerization of oxetanes containing hydroxyl groups was carried out with potassium tert‐butoxide as an initiator in the presence of 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding multifunctional hyperbranched polymers: poly(3‐ethyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 2200–4100 in 83–95% yields, and poly(3‐methyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 4600–5200 in 70–95% yields. The synthesized poly(3‐ethyl‐3‐hydroxymethyloxetane)s and poly(3‐methyl‐3‐hydroxymethyloxetane)s were hyperbranched polyethers containing an oxetane moiety and many hydroxy groups at the ends. The postpolymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane)s was performed in the presence of potassium tert‐butoxide and 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding polymers with higher molecular weights in good yields. The cationic polymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane) derivatives was carried out with boron trifluoride etherate as an initiator and was followed by alkaline hydrolysis; this yielded a new branched polymer, a poly(hyperbranched polyether), with many pendant hydroxy groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3739–3750, 2004  相似文献   

17.
A new method is successfully developed for the separation and determination of a very low amount of tramadol in urine using functionalized multiwalled carbon nanotubes/flower‐shaped zinc oxide before solid‐phase microextraction combined with gas chromatography. Under ultrasonic agitation, a sol of multiwalled carbon nanotubes and flower‐shaped zinc oxide were forced into and trapped within the pore structure of the polypropylene and the sol solution immobilized into the hollow fiber. Flower‐shaped zinc oxide was synthesized and characterized by Fourier transform infrared spectroscopy. The morphology of the fabricated solid‐phase microextraction surface was investigated by scanning electron microscopy and X‐ray diffraction. The parameters affecting the extraction efficiencies were investigated and optimized. Under the optimized conditions, the method shows linearity in a wide range of 0.12–7680 ng/mL, and a low detection limit (S/N = 3) of 0.03 ng/mL. The precision of the method was determined and a relative standard deviation of 3.87% was obtained. This method was successfully applied for the separation and determination of tramadol in urine samples. The relative recovery percentage obtained for the spiked urine sample at 1000 ng/mL was 94.2%.  相似文献   

18.
In this contribution, we report on the self‐assembly in water of original amphiphilic poly(2‐methyl‐2‐oxazoline)‐b‐poly(tert‐butyl acrylate) copolymers, synthesized by copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction. For such purpose, (poly(2‐methyl‐2‐oxazoline)) and (poly(tert‐butyl acrylate)) are first prepared by cationic ring‐opening polymerization and atom transfer radical polymerization, respectively. Well‐defined polymeric building blocks, ω‐N3‐P(t‐BA) and α‐alkyne‐P(MOx), bearing reactive chain end groups, are accurately characterized by matrix‐assisted laser desorption ionization time‐of‐flight spectroscopy. Then, P(MOx)nb‐P(t‐BA)m are achieved by polymer–polymer coupling and are fully characterized by diffusion‐ordered NMR spectroscopy and size exclusion chromatography, demonstrating the obtaining of pure amphiphilic copolymers. Consequently, the latter lead to the formation in water of well‐defined monodisperse spherical micelles (RH = 40–60 nm), which are studied by fluorescence spectroscopy, static light scattering, atomic force microscope, and transmission electronic microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
The anionic polymerization of 2‐vinylnaphthalene (2VN) has been studied in tetrahydrofuran (THF) at ?78 °C and in toluene at 40 °C. 2VN polymerization in THF, toluene, or toluene/THF (99:1 v/v) initiated by sec‐butyllithium (sBuLi) indicates living characteristics, affording polymers with predefined molecular weights and narrow molecular weight distributions. Block copolymers of 2VN with methyl methacrylate (MMA) and tert‐butyl acrylate (tBA) have been synthesized successfully by sequential monomer addition in THF at ?78 °C initiated by an adduct of sBuLi–LiCl. The crossover propagation from poly(2‐vinylnaphthyllithium) (P2VN) macroanions to MMA and tBA appears to be living, the molecular weight and composition can be predicted, and the molecular weight distribution of the resulting block copolymer is narrow (weight‐average molecular/number‐average molecular weight < 1.3). Block copolymers with different chain lengths for the P2VN segment can easily be prepared by variations in the monomer ratios. The block copolymerization of 2VN with hexamethylcyclotrisiloxane also results in a block copolymer of P2VN and poly(dimethylsiloxane) (PDMS) contaminated with a significant amount of homo‐PDMS. Poly(2VN‐b‐nBA) (where nBA is n‐butyl acrylate) has also been prepared by the transesterification reaction of the poly(2VN‐b‐tBA) block copolymer. Size exclusion chromatography, Fourier transform infrared, and 1H NMR measurements indicate that the resulting polymers have the required architecture. The corresponding amphiphilic block copolymer of poly(2VN‐b‐AA) (where AA is acrylic acid) has been synthesized by acidic hydrolysis of the ester group of tert‐butyl from the poly(2VN‐b‐tBA) copolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4387–4397, 2002  相似文献   

20.
Hydroxyl‐terminated poly(ether ether ketone) with pendent tert‐butyl groups (PEEKTOH) was synthesized by the nucleophilic substitution reaction of 4,4′‐difluorobenzophenone with tert‐butyl hydroquinone with potassium carbonate as a catalyst and N‐methyl‐2‐pyrrolidone as a solvent. Diglycidyl ether of bisphenol A epoxy resin was toughened with PEEKTOHs having different molecular weights. The melt‐mixed binary blends were homogeneous and showed a single composition‐dependent glass‐transition temperature (Tg). Kelley–Bueche and Gordon–Taylor equations gave good correlation with the experimental Tg. Scanning electron microscopy studies of the cured blends revealed a two‐phase morphology. A sea‐island morphology in which the thermoplastic was dispersed in a continuous matrix of epoxy resin was observed. Phase separation occurred by a nucleation and growth mechanism. The dynamic mechanical spectrum of the blends gave two peaks corresponding to epoxy‐rich and thermoplastic‐rich phases. The Tg of the epoxy‐rich phase was lower than that of the unmodified epoxy resin, indicating the presence of dissolved PEEKTOH in the epoxy matrix. There was an increase in the tensile strength with the addition of PEEKTOH. The fracture toughness increased by 135% with the addition of high‐molecular‐weight PEEKTOH. The improvement in the fracture toughness was dependent on the molecular weight and concentration of the oligomers present in the blend. Fracture mechanisms such as crack path deflection, ductile tearing of the thermoplastic, and local plastic deformation of the matrix occurred in the blends. The thermal stability of the blends was not affected by blending with PEEKTOH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 541–556, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号