首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Palladium‐catalyzed coupling reactions belong to the most versatile processes for the construction of carbon‐carbon bonds. This article features the Heck, Stille, and Suzuki reaction, which are especially effective for the coupling of alkenes and arenes.  相似文献   

6.
The novel title compound, C25H31O6P, contains rigid fused rings which are shown to be similar to the precursor structures. Weak C—H⋯O inter­molecular inter­actions produce two‐dimensional sheets composed of R44(28) rings.  相似文献   

7.
The crystal structure of iPr4Sn4S6 consists of isolated molecules that contain an adamantane‐like Sn4S6 core. The tin atoms are coordinated nearly tetrahedrally, with Sn–S distances ranging from 2.397(1) to 2.411(1) Å. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
An efficient synthetic route to the concave‐shaped, potentially ionophoric syn‐ and anti‐isomers of 5,6,11,12,17,18‐hexahydro‐5,18:6,11:12,17‐triepoxytrinaphthylene ( 4 ) was elaborated. Starting from ‘oxabenzonorbornadiene’ ( 5 ), the stannylated precursor 9 was prepared in three steps, followed by cyclotrimerization catalyzed by copper(I) thiophene‐2‐carboxylate (CuTC) , which afforded 4 in a syn/anti ratio of 5 : 4.  相似文献   

11.
12.
13.
The title compounds of sulfur, C10H6N2O4S2, (I), and selenium, C10H6N2O4Se2, (II), are isomorphous. The crystallographically centrosymmetric mol­ecules are planar. The bond distances and angles, except for those involving the S and Se atoms, are comparable. The mol­ecules are disposed in layers parallel to the bc plane. The molecular axes differ by 75° for (I) and by 80° for (II) from one layer to the next.  相似文献   

14.
15.
The basic building unit in the structure of the title compound, C14H14FNO3, is pairs of molecules arranged in an antiparallel fashion, enabling weak C—H...O interactions. Each molecule is additionally involved in π–π interactions with neighbouring molecules. The pairs of molecules formed by the C—H...O hydrogen bonds and π–π interactions form ribbon‐like chains running along the c axis. Theoretical calculations based on these pairs showed that, although the main intermolecular interaction is electrostatic, it is almost completely compensated by an exchange–repulsion contribution to the total energy. As a consequence, the dominating force is a dispersion interaction. The F atoms form weak C—F...H—C interactions with the H atoms of the neighbouring ethyl groups, with H...F separations in the range 2.59–2.80 Å.  相似文献   

16.
17.
New reactive unsaturated starch derivatives, 1‐allyloxy‐2‐hydroxy‐propyl‐starches (AHP‐starches), were synthesized by the reaction of waxy maize starch (WMS) and amylose‐enriched maize starch (AEMS) with allyl glycidyl ether in a heterogeneous alkaline suspension containing NaOH and Na2SO4. The degree of substitution (DS) was determined by 1H NMR spectroscopy, and a DS of 0.20 ± 0.01 was found for both AHP‐WMS and AHP‐AEMS, respectively. The AHP derivatives of WMS and AEMS were further characterized with 1H and 13C NMR. It was shown that the AHP substitution was located on the C‐6 hydroxyl group of the glucose residues in the starch. The substitution pattern of the AHP groups along the polymer chain was randomly clustered, as determined by enzymatic digestion using pullulanase, α‐amylase, and amyloglucosidase, followed by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of the digestion products. With X‐ray diffraction and scanning electron microscopy, no changes in the granular morphology and crystallinity between the unmodified starches and AHP‐starches were detected. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2734–2744, 2007  相似文献   

18.
19.
The title compound, [(PPh3)(p‐MeC6H4COO)2RuB10H8], contains an 11‐vertex closo‐type RuB10 cluster fused to two symmetric exo­poly­hedral Ru—O—C—O—B five‐membered rings. Principal distances include Ru—B 2.010 (5)–2.392 (4) Å and Ru—O 2.218 (5) and 2.222 (2) Å.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号