首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A flow-injection chemiluminescence (CL) method, based on the luminescent properties of the Ce(IV)-Na2SO3-lanthanide(III)-grepafloxacin system, was developed for the determination of grepafloxacin {1-cyclopropyl-6-fluoro-1,4-dihydro-5-methyl-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid}. La(III), Tb(III), and Eu(III) ions were tested as possible chemiluminescence sensitizers. The best results were achieved when Tb(III) was used as lanthanide ion, so the technique was optimised working with this ion. Under the optimum experimental conditions, the linear range was 0.05-2.00 μg ml−1 grepafloxacin, with a 0.01 μg ml−1 detection limit and 2.0% relative standard deviation (n=10). The proposed procedure has been applied to the determination of grepafloxacin in tablets and spiked human urine.  相似文献   

2.
The interaction between trivalent lanthanide ions and poly(1,4,7,10,13‐pentaoxacyclopentadecan‐2‐yl‐methyl methacrylate), PCR5, in aqueous solution and in the solid state have been studied. In aqueous solution, evidence of a weak interaction between the lanthanides and PCR5 comes from the small red shift of the Ce(III) emission spectra and the slight broadening of the Gd(III) EPR spectra. From the Tb(III) lifetimes in the presence of H2O and D2O the loss of one or two water coordinated molecules is confirmed when Tb(III) is bound to PCR5. An association constant of the order of 200 M?1 was obtained for a 1:1 (lanthanide:15‐crown‐5) complex from the shift of the polymer NMR signals induced by Tb(III). A similar association constant is obtained from the differences of the molar conductivity of Ce(III) solution at various concentrations in presence and absence of PCR5. When Tb(III) is adsorbed on PCR5 membranes, lifetime experiments in H2O and D2O confirm the loss of 5 or 6 water coordinated molecules indicating that in solid state the lanthanide(III)‐PCR5 interaction is stronger than in solution. The adsorption of Ce(III) in PCR5 membranes shows a Langmuir type isotherm, from which an equilibrium constant of 39 M?1 has been calculated. SEM shows that the membrane morphology is not much affected by lanthanide adsorption. Support for lanthanide ion–crown interactions comes from ab initio calculations on 15‐crown‐5/La(III) complex. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1788–1799, 2007  相似文献   

3.
We have employed a high‐sensitivity off‐line coupled with on‐line preconcentration method, cloud‐point extraction (CPE)/cation‐selective exhaustive injection (CSEI) and sweeping‐MEKC, for the analysis of malachite green. The variables that affect CPE were investigated. The optimal conditions were 250 g/L of Triton X‐100, 10% of Na2SO4 (w/v), heat‐assisted at 60°C for 20 min. We monitored the effects of several of the CSEI‐sweeping‐MEKC parameters – including the type of BGE, the concentrations of SDS, the injection length of the high‐conductivity buffer, and the injection time of the sample – to optimize the separation process. The optimal BGE was 50 mM citric acid (pH 2.2) containing 100 mM SDS. In addition, electrokinetic injection of the sample at 15 kV for 800 s provided both high separation efficiency and enhanced sweeping sensitivity. The sensitivity enhancement for malachite green was 1.9×104 relative to CZE; the coefficients of determination exceeded 0.9928. The LOD, based on an S/N of 3:1, of CSEI‐sweeping‐MEKC was 0.87 ng/mL; in contrast, when using off‐line CPE/CSEI‐sweeping‐MEKC the sensitivity increased to 69.6 pg/mL. This proposed method was successfully applied to determine trace amounts of malachite green in fish water samples.  相似文献   

4.
In this paper two applications of three‐phase HF‐LPME for the determination of pharmaceuticals in human urine are proposed: a capillary electrophoresis with a photodiode array detection method for the analysis of seven nonsteroidal anti‐inflammatory drugs (NSAIDs) and a high‐performance liquid chromatographic with photo diode array and fluorescence detection method for the determination of four sulfonamides and their corresponding N4‐acetyl‐metabolites. Q3/2 Accurel® polypropylene hollow fibers were used for both procedures. Dihexyl ether was used as the supported liquid membrane for the determination of anti‐inflammatories and 1‐octanol for sulfonamides. An aqueous solution (pH 12) was used in both procedures as the acceptor phase and as the donor phase an aqueous solution (pH 2), and a 2 m Na2SO4 aqueous solution (pH 4) was used for the determination of the anti‐inflammatories and sulfonamides. The detection limits obtained were between 0.25 (naproxen) and 0.86 ng/mL (aceclofenac) for the determination of anti‐inflammatories and 7 × 10?4 (sulfamethoxazole) and 0.048 ng/mL (N4‐acetyl‐sulfamethazine) for sulfonamides. The method was successfully applied to the determination of the analytes in human urine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A three‐phase hollow‐fiber liquid‐phase microextraction based on deep eutectic solvent as acceptor phase was developed and coupled with high‐performance capillary electrophoresis for the simultaneous extraction, enrichment, and determination of main active compounds (hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin) in a traditional Chinese medicinal formula. In this procedure, two hollow fibers, impregnated with n‐heptanol/n‐nonanol (7:3, v/v) mixture in wall pores as the extraction phase and a combination (9:1, v/v) of methyltrioctylammonium chloride/glycerol (1:3, n/n) and methanol in lumen as the acceptor phase, were immersed in the aqueous sample phase. The target analytes in the sample solution were first extracted through the organic phase, and further back‐extracted to the acceptor phase during the stirring process. Important extraction parameters such as types and composition of extraction solvent and deep eutectic solvent, sample phase pH, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, detection limits were 0.3–0.8 ng/mL with enrichment factors of 6–114 for the analytes and linearities of 0.001–13 μg/mL (r2 ≥ 0.9901). The developed method was successfully applied to the simultaneous extraction and concentration of the main active compounds in a formula of Zi‐Cao‐Cheng‐Qi decoction with the major advantages of convenience, effectiveness, and environmentally friendliness.  相似文献   

6.
A chemiluminescence (CL) method is presented for the flow injection determination of norfloxacin (NFLX). It is based on the fact that the weak CL of the Ce(IV)-Na2SO3 redox system is strongly enhanced in the presence of silver nanoparticles. UV-visible and fluorescence spectroscopy was carried out and showed that the energy of the intermediate SO2*, originating from the reaction of Ce(IV) with Na2SO3, was transferred to Tb3+ via NFLX, and that the silver nanoparticles (AgNPs) accelerate the process due to the electric activity of AgNPs. Norfloxacin was detected by measuring the CL intensity which increases linearly with the concentration of NFLX in the range from 10 nM to 50 μM. The detection limit is lowered to 2.0 nM. The method was successfully applied to the determination of NFLX in eyedrops.  相似文献   

7.
Cerium‐doped titanium dioxide (TiO2) with a hollow fiber structure was successfully prepared using ammonium ceric nitrate and tetrabutyltitanate as precursors and cotton fiber as the template. The effects of cerium (Ce)‐doping on the crystallite sizes, crystal pattern, and optical property of the prepared catalysts were investigated by means of techniques such as scanning electron microscopy (SEM), X‐ray diffraction (XRD), BET surface area, and UV‐vis diffuse absorption spectroscopy. SEM observation showed that the prepared TiO2 fibers possessed fibrous shape inherited from the cotton fiber and had a hollow structure. As confirmed by XRD and UV‐vis diffuse absorption spectroscopy examinations, Ce‐doping restrained the growth of grain size and extended the photoabsorption edge of TiO2 hollow fiber into the visible light region. The present photocatalyst showed higher photocatalytic reactivity in photodegradation of highly concentrated methylene blue (MB) solutions than pure TiO2 under UV and visible light, and the amount of Ce‐doped significantly affected the catalytic property. In the experiment condition, the photocatalytic activity of 0.5 mol% Ce‐doped TiO2 fiber was optimal of all the prepared samples. In addition, the possibility of cyclic usage of the photocatalyst was also confirmed. The material was easily removed by centrifugal separation. Therefore, using the template method and by doping with cerium, TiO2 may hopefully become a low‐energy consuming, high activity and green environmentally friendly catalytic material.  相似文献   

8.
Reaction of CeCl3·7H2O with Na2(oda) (oda = O(CH2CO2)22— oxydiacetate) in a 2:3 ratio gives the neutral cerium(III) complex [Ce2(oda)3(H2O)3]·9H2O ( 1 ). Treatment of a 1:3 mixture of CeCl3·7H2O and H2oda in water with 4 molar equivalents of NaOH also gives 1 but, with a larger excess of NaOH, the tri‐sodium salt Na3[Ce(oda)3]·9H2O ( 2 ) is isolated. Formation of a tri‐ammonium analogue of 2 can be achieved by neutralisation of an aqueous solution of CeCl3·7H2O and H2(oda) in a 1:3 ratio by NH4OH, giving (NH4)3[Ce(oda)3]·7H2O ( 3 ). Use of the cerium(IV) reagent (NH4)2[Ce(NO3)6] with Na2(oda) results in reduction to cerium(III) under ambient conditions and isolation of 1 . However, in the absence of light this reaction yields crystals of the novel cerium(IV) heterobimetallic [Ce(oda)3Na4(NO3)2] ( 4 ). Each of these complexes exhibit a 3‐D network structure having a common nine‐coordinate [Ce(oda)3]n— (n = 2 or 3) subunit, irrespective of the oxidation state of cerium. In 1 , six [Ce(oda)3]3— anions are connected, through bridging bidentate carboxylates, to a second Ce3+ site further coordinated by three water molecules. In contrast, the ammonium salt 2 , displays isolated [Ce(oda)3]3— anions, devoid of further carboxylate bonding, but enmeshed within a network of hydrogen‐bonded NH4+ cations and water molecules. The remarkable structure of 4 consists of infinite 2‐D sheets of [Na2(NO3)]+ pillared by [Ce(oda)3]2— units, the connectivity arising by multidentate nitrate and carboxylate bridging.  相似文献   

9.
A simple, environmentally friendly, and efficient method, based on hollow‐fiber‐supported liquid membrane microextraction, followed by high‐performance liquid chromatography has been developed for the extraction and determination of amlodipine (AML) and atorvastatin (ATO) in water and urine samples. The AML in two‐phase hollow‐fiber liquid microextraction is extracted from 24.0 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the ATO in three‐phase hollow‐fiber liquid microextraction is extracted from aqueous donor phase to organic phase and then back‐extracted to the aqueous acceptor phase, which can be directly injected into the high‐performance liquid chromatograph for analysis. The preconcentration factors in a range of 34–135 were obtained under the optimum conditions. The calibration curves were linear (R2 ≥ 0.990) in the concentration range of 2.0–200 μg/L for AML and 5.0–200 μg/L for ATO. The limits of detection for AML and ATO were 0.5 and 2.0 μg/L, respectively. Tap water and human urine samples were successfully analyzed for the existence of AML and ATO using the proposed methods.  相似文献   

10.
A new method based on high‐performance liquid chromatography (HPLC) coupled with on‐line gold nanoparticle‐catalyzed luminol chemiluminescence (CL) detection was developed for the simultaneous quantitation of catecholamines in rat brain. In the present CL system, gold nanoparticles were produced by the on‐line reaction of H2O2, NaHCO3?Na2CO3 (buffer solution of luminol) and HAuCl4. Norepinephrine (NE), epinephrine (EP) and dopamine (DA) could strongly enhance the CL signal of the on‐line gold nanoparticle‐catalyzed luminol system. The UV?visible absorption spectra and transmission electron microscopy studies were carried out, and the CL enhancement mechanism was proposed. Catecholamines promoted the on‐line formation of more gold nanoparticles, which better catalyzed the luminol–H2O2 CL reaction. The good separation of NE, EP and DA was achieved with isocratic elution using a mixture of methanol and 0.2% aqueous phosphoric acid (5:95, v/v) within 8.5 min. Under the optimized conditions, the detection limits, defined as a signal‐to‐noise ratio of 3, were in the range of 1.32–1.90 ng/mL, corresponding to 26.4?38.0 pg for 20 μL sample injection. The recoveries of catecholamines added to rat brain sample were >94.6%, with the precisions <5.5%. The validated HPLC?CL method was successfully applied to determine NE and DA in rat brain without prior sample purification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The speciation of chromium(VI) and chromium(III) was investigated by using hollow fiber liquid‐phase microextraction based on two immiscible organic solvents followed by high performance liquid chromatography with ultraviolet detection. In this method, chromium(VI) and chromium(III) reacted with ammonium pyrrolidine dithiocarbamate to produce hydrophobic complexes. Subsequently, the complexes were first extracted into a thin layer of organic solvent (n‐dodecane) present in the pores of a porous hollow fiber, and then into a μL volume of an organic acceptor (methanol) located inside the lumen of the hollow fiber. Then, the extracting organic phase was injected into the separation column of the high‐performance liquid chromatograph for the analysis of both chromium species. Effective parameters on extraction were optimized using one‐variable‐at‐a‐time method and central composite design. Under optimized conditions, a linear range of 0.25–100 and 0.5–100 μg/L (R 2 > 0.998), the limits of detection of (S/N = 3) 0.08 and 0.1 μg/L and a preconcentration factor of 625 and 556 were achieved for chromium(VI) and chromium(III), respectively. The method was successfully applied to the speciation and determination of chromium species in different water samples and satisfactory results were obtained.  相似文献   

12.
The deposition of Ce‐based conversion coatings onto 2024‐T3 Al alloy sheet was studied using Rutherford backscattering spectroscopy, scanning electron microscopy, Auger electron spectroscopy, x‐ray photoelectron spectroscopy and atomic force microscopy. The Al sheet was pretreated with an alkaline clean followed by treatment in a Ce(IV) and H2SO4‐based desmutter. The Ce(IV)‐based conversion coating solution contained 0.1 M CeCl3·7H2O and 3% H2O2 and was acidified to pH 1.9 with HCl. Upon immersion, there was an induction period that included activation followed by aluminium oxide growth over the matrix and cerium oxide deposition onto cathodic intermetallic particles and along rolling marks on the surface. After the induction period cerium oxide deposited generally across the whole surface and thickened. The strongest anodic sites initially were adjacent to the intermetallic cathodes and resulted in aluminium dissolution but also oxide thickening. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The effects of three non‐chromate‐based deoxidizers, namely NaBrO3/HNO3, (NH4)4Ce(SO4)4/H2SO4 and Fe(III)/HF/HNO3, on the Al alloy 7475‐T7651 were investigated. Several analytical methods were employed, including SEM, AES, transmission electron microscopy (TEM), electron energy‐loss spectroscopy (EELS) and glow discharge optical emission spectrometry (GDOES), to study the effects on the surface of this alloy after each treatment compared with the as‐received and alkaline‐cleaned alloy surfaces. The untreated alloy was found to have a thick oxide of 200–320 nm, consisting mainly of MgO. Alkaline cleaning results in an etching effect that thins the oxide and also deposits a thin silicate layer on the surface. In the case of the deoxidizers, there is significant removal of the native oxide of the alloy by the NaBrO3/HNO3 deoxidizer. There is also evidence of intermetallic attack on the alloy. The (NH4)4Ce(SO4)4/H2SO4 deoxidizer, which is a low‐etch‐rate deoxidizer, resulted in a slight thinning of the oxide. However, the effect was not significantly greater than with alkaline cleaning alone. The most effective deoxidizer in reducing the oxide thickness of the alloy is Fe(III)/HF/HNO3, in which the etch rate was sufficiently high to remove completely the native oxide. In this case, equilibrium between oxide removal and the formation of new oxides on the alloy surface was achieved. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
In a stirred batch reaction, Fe(phen)32+ ion behaves differently from Ce(III) or Mn(II) ion in catalyzing the bromate‐driven oscillating reaction with ethyl hydrogen malonate [CH2COOHCOOEt, ethyl hydrogen malonate (EHM)]. The effects of N2 atmosphere, concentrations of bromate ion, EHM, metal ion catalyst, sulfuric acid, and additive (bromide ion or bromomalonic acid) on the pattern of oscillations were investigated. The kinetic study of the reaction of EHM with Ce(IV), Mn(III), or Fe(phen)33+ ion indicates that under aerobic or anaerobic conditions the order of reactivity toward reacting with EHM is Mn(III) > Ce(IV) ≫ Fe(phen)33+, which follows the same trend as that of the malonic acid system. The presence of the ester group in EHM lowers the reactivity of the two methylene hydrogen atoms toward bromination or oxidation by Ce(IV), Mn(III), or Fe(phen)33+ ion. No good oscillations were observed for the BrO3−‐CH2(COOEt)2 reaction catalyzed by Ce(III), Mn(II), or Fe(phen)32+ ion. A discussion of the effects of oxygen on the reactions of malonic acid and its derivatives (RCHCOOHCOOR′) with Ce(IV), Mn(III), or Fe(phen)33+ ion is also presented. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 52–61, 2000  相似文献   

15.
A new and fast sample preparation technique based on three‐phase hollow fiber liquid‐phase microextraction with a magnetofluid was developed and successfully used to quantify the aristolochic acid I (AA‐I) and AA‐II in plasma after oral administration of Caulis akebiae extract. Analysis was accomplished by reversed‐phase high‐performance liquid chromatography with fluorescence detection. Parameters that affect the hollow fiber liquid‐phase microextraction processes, such as the solvent type, pH of donor and acceptor phases, content of magnetofluid, salt content, stirring speed, hollow fiber length, extraction temperature, and extraction time, were investigated and optimized. Under the optimized conditions, the preconcentration factors for AA‐I and AA‐II were >627. The calibration curve for two AAs was linear in the range of 0.1–10 ng/mL with the correlation coefficients >0.9997. The intraday and interday precision was <5.71% and the LODs were 11 pg/mL for AA‐I and 13 pg/mL for AA‐II (S/N = 3). The separation and determination of the two AAs in plasma after oral administration of C. akebiae extract were completed by the validated method.  相似文献   

16.
The kinetics and mechanism of cerium(IV) oxidation of hexitols, i.e. D ‐sorbitol and D ‐mannitol, in aqueous sulfuric acid media have been studied in the presence and absence of surfactants. Under the kinetic conditions, [S]T ? [Ce(IV)]T, where [S]T is the total substrate (D ‐sorbitol or D ‐mannitol) concentration, the overall process shows a first‐order dependence on [Ce(IV)]T and [S]T. The process is acid catalyzed and inhibited by [HSO]. From the [HSO] dependence, it has been noted that the both Ce(SO4)2+ and Ce(SO4)2 have been found kinetically active. The different rate constants in the presence and absence of surfactants have been estimated with the activation parameters. N‐cetylpyridinium chloride has been found to retard the oxidation process of hexitols, whereas sodium dodecyl sulfate has been found to accelerate the rate process. All these findings including the micellar effects have been interpreted in terms of the proposed reaction mechanism and partitioning behavior of the kinetically active different species of Ce(IV) between the aqueous and pseudomicellar phase. © 2008 Wiley Periodicals, Inc. 40: 445–453, 2008  相似文献   

17.
The oxidation of D ‐mannitol by cerium(IV) has been studied spectrophotometrically in aqueous sulfuric acid medium at 25°C at constant ionic strength of 1.60 mol dm?3. A microamount of ruthenium(III) (10?6 mol dm?3) is sufficient to enhance the slow reaction between D ‐mannitol and cerium(IV). The oxidation products were identified by spot test, IR and GC‐MS spectra. The stoichiometry is 1:4, i.e., [D ‐mannitol]: [Ce(IV)] = 1:4. The reaction is first order in both cerium(IV) and ruthenium(III) concentrations. The order with respect to D ‐mannitol concentration varies from first order to zero order as the D ‐mannitol concentration increases. Increase in the sulfuric acid concentration decreases the reaction rate. The added sulfate and bisulfate decreases the rate of reaction. The active species of oxidant and catalyst are Ce(SO4)2 and [Ru(H2O)6]3+, respectively. A possible mechanism is proposed. The activation parameters are determined with respect to a slow step and reaction constants involved have been determined. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 440–452, 2010  相似文献   

18.
In a stirred batch experiment and under aerobic conditions, ferroin (Fe(phen)32+) behaves differently from Ce(III) or Mn(II) ion as a catalyst for the Belousov‐Zhabotinsky (BZ) reaction with allylmalonic acid (AMA). The effects of bromate ion, AMA, metal‐ion catalyst, and sulfuric acid on the oscillating pattern were investigated. The kinetics of the reaction of AMA with Ce(IV), Mn(III), or Fe(phen)33+ ion was studied under aerobic or anaerobic conditions. The order of reactivity of metal ions toward reaction with AMA is Fe(phen)33+ > Mn(III) > Ce(IV) under aerobic conditions whereas it is Mn(III) > Ce(IV) > Fe(phen)33+ under anaerobic conditions. Under aerobic or anaerobic conditions, the order of reactivity of RCH(CO2H)2 (R = H (MA), Me (MeMA), Et (EtMA), allyl (AMA), n‐Bu (BuMA), Ph (PhMA), and Br (BrMA)) is PhMA > MA > BrMA > AMA > MeMA > EtMA > BuMA toward reaction with Ce(IV) ion and it is MA > PhMA > BrMA > MeMA > AMA > EtMA > BuMA toward reaction with Mn(III) ion. Under aerobic conditions, the order of reactivity of RCH(CO2H)2 toward reaction with Fe(phen)33+ ion is PhMA > BrMA > (MeMA, AMA) > (BuMA, EtMA) > MA. The experiment results are rationalized.  相似文献   

19.
In this study, two‐phase hollow‐fiber liquid‐phase microextraction and three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6–200 and 0.9–200 μg L?1 and the limits of detection were 0.2 and 0.3 μg L?1 for oxazepam and lorazepam, respectively. For two‐phase hollow fiber liquid‐phase microextraction, the calibration curves were found to be linear in the range of 1–200 and 1.5–200 μg L?1 and the limits of detection were 0.3 and 0.5 μg L?1 for oxazepam and lorazepam, respectively. In a urine sample, for three‐phase hollow‐fiber‐based liquid‐phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2–4.5% and preconcentration factors in the range of 70–180 were obtained for oxazepam and lorazepam, respectively. Also for the two‐phase hollow‐fiber liquid‐phase microextraction, preconcentration factors in the range of 101–257 were obtained for oxazepam and lorazepam, respectively.  相似文献   

20.
《Electroanalysis》2005,17(3):210-222
Presented in this work is the first step towards an enzymeless/mediatorless glucose sensor. We first observed remarkable electrocatalytic oxidation of glucose using combinative ruthenium oxide (RuOx)‐Prussian blue (PB) analogues (designated as mvRuOx‐RuCN, mv: mixed valent) at ca. 1.1 V (vs. Ag/AgCl) in acidic media (pH 2 Na2SO4/H2SO4). Individual RuOx and PB analogs failed to give any such catalytic response. A high ruthenium oxidation state (i.e., oxy/hydroxy‐RuVII, E°≈1.4 V vs. RHE), normally occurring in strong alkaline conditions at RuOx‐based electrodes, was electrogenerated and stabilized (without any conventional disproportionation reaction) in the mvRuOx‐RuCN matrix for glucose catalysis. Detail X‐ray photoelectron spectroscopic studies can fully support the observation. The catalyst was chemically modified onto a disposable screen‐printed carbon electrode and employed for the amperometric detection of glucose via flow injection analysis (FIA). This system has a linear detection range of 0.3–20 mM with a detection limit and sensitivity of 40 μM (S/N=3) and 6.2 μA/(mM cm2), respectively, for glucose. Further steps towards the elimination of interference and the extendibility to neutral pHs were addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号