首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accelerating molecular modeling applications with graphics processors   总被引:3,自引:0,他引:3  
Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State-of-the-art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremendous computational resource that can now be utilized for general purpose computing as a result of recent advances in GPU hardware and software architecture. In this article, an overview of recent advances in programmable GPUs is presented, with an emphasis on their application to molecular mechanics simulations and the programming techniques required to obtain optimal performance in these cases. We demonstrate the use of GPUs for the calculation of long-range electrostatics and nonbonded forces for molecular dynamics simulations, where GPU-based calculations are typically 10-100 times faster than heavily optimized CPU-based implementations. The application of GPU acceleration to biomolecular simulation is also demonstrated through the use of GPU-accelerated Coulomb-based ion placement and calculation of time-averaged potentials from molecular dynamics trajectories. A novel approximation to Coulomb potential calculation, the multilevel summation method, is introduced and compared with direct Coulomb summation. In light of the performance obtained for this set of calculations, future applications of graphics processors to molecular dynamics simulations are discussed.  相似文献   

2.
Molecular simulation is a powerful research tool for gaining new insights into polymer chemical structures and processes. This paper presents a computational conformational analysis of some aromatic polyesters containing either an oxetane ring or propylene moieties in the main chain. The studied polyesters were synthesised by phase transfer catalysis using 3,3-bis-(chloromethyl)-oxetane, 1,3-dibromopropane and various aromatic diacids. The computational analysis and calculations were performed using the Cerius2 program (version 3.5), molecular simulation software for material science, designed by Molecular Simulations Incorporated. This study elucidates some aspects and properties dependent upon supramolecular arrangement of the macromolecular chains. In order to verify the agreement between simulated and experimental results the coefficient of asymmetry, order parameter and glass transition temperature were calculated for each studied aromatic polymer.  相似文献   

3.
IntroductionThe benzoxazine polymer could be deemed asan alternative to traditional phenolics because ofthe similar main chain structures.A Novolac typeof phenolic resin has the unit,Ar—CH2 — withsome Ph—CH2 N( R)—CH2 — structure,where Phdenotes the phenolic group.In addition to theadvantages owned by ordinary phenolics,such ashigh temperature resistance,dimensional stability,good electrical properties,flame retardance,andlow smoke generation,this family ofpolybenzoxazines provides t…  相似文献   

4.
The electronic absorption spectra of pyridine and nicotine in aqueous solution have been computed using a multistep approach. The computational protocol consists in studying the solute solvation with accurate molecular dynamics simulations, characterizing the hydrogen bond interactions, and calculating electronic transitions for a series of configurations extracted from the molecular dynamics trajectories with a polarizable QM/MM scheme based on the fluctuating charge model. Molecular dynamics simulations and electronic transition calculations have been performed on both pyridine and nicotine. Furthermore, the contributions of solute vibrational effect on electronic absorption spectra have been taken into account in the so called vertical gradient approximation. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

5.
6.
Molecular recognition (whether by enzymes, the immune system, or chelating ligands) depends critically on molecular conformation. Molecular mechanics predicts energetically favorable molecular conformations by locating low energy conformations using an empirical fit of molecular potential energy as a function of internal coordinates. Molecular mechanics analysis of 18-crown-6 demonstrates that the nonbonded term (primarily the electrostatic part) is the largest contributor to the conformational energy. Nevertheless, common methods of treating the electrostatic interaction for 18-crown-6 yield inconsistent values for conformational energies partly because partial charges assigned to each atom can change with conformation due to through-space inductive effects which are not considered in most molecular mechanics programs. Similar findings from several other groups are reviewed to support our conclusions. We argue for care and caution in predicting conformational preferences of molecules with two or more highly polar atoms. We also discuss the desirability of using an empirical method of partial charge determination such as the charge equilibration algorithm of Rappé and Goddard (or a suitable generalization which includes polarization) as a method of including these effects in molecular mechanics and molecular dynamics calculations.  相似文献   

7.
Abstract

Molecular Mechanics, Monte Carlo and Molecular Dynamics simulations on free and complexed crown ethers, on bicyclic cryptands and cryptates provide deeper insights into their conformational and recognition properties and allow to address the questions of preorganisation, complementarity, and binding selectivity. Alternatively, references to experimental data allow to outline present theoretical and computational limitations. Of particular interest are the microscopic pictures obtained in solution, which demonstrate the importance of solvent and environment effects on the precise structure of free and complexed receptors, and on their dynamics. Quantitative insights into relative free energies in solution represents a most promising breakthrough for computational studies in molecular recognition.  相似文献   

8.
The mechanism of enzymatic peptide hydrolysis in matrix metalloproteinase‐2 (MMP‐2) was studied at atomic resolution through quantum mechanics/molecular mechanics (QM/MM) simulations. An all‐atom three‐dimensional molecular model was constructed on the basis of a crystal structure from the Protein Data Bank (ID: 1QIB), and the oligopeptide Ace‐Gln‐Gly~Ile‐Ala‐Gly‐Nme was considered as the substrate. Two QM/MM software packages and several computational protocols were employed to calculate QM/MM energy profiles for a four‐step mechanism involving an initial nucleophilic attack followed by hydrogen bond rearrangement, proton transfer, and C? N bond cleavage. These QM/MM calculations consistently yield rather low overall barriers for the chemical steps, in the range of 5–10 kcal/mol, for diverse QM treatments (PBE0, B3LYP, and BB1K density functionals as well as local coupled cluster treatments) and two MM force fields (CHARMM and AMBER). It, thus, seems likely that product release is the rate‐limiting step in MMP‐2 catalysis. This is supported by an exploration of various release channels through QM/MM reaction path calculations and steered molecular dynamics simulations. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
分子动力学广泛应用于分子体系, 但受限于计算能力, 一般难以用于纳米器件的研究. 本文采用自主开发的超大规模分子动力学仿真程序(NanoMD), 构建了原子级的纳米齿轮模型, 并以此为代表实现了对具有高速转动特性的纳米器件的模拟. 通过位错和缺陷分析, 确定了纳米器件在高速转动过程中的应力分布以及失效机制, 并明确了以极限弹性转速为依据的材料强度衡量模式. 研究发现纳米器件在极限转速方面存在明显的尺寸效应: 随着器件直径的减小而单调增大, 随着轴径的缩小而先增大后减小.  相似文献   

10.
Kinetic and Statistical Thermodynamical Package (KiSThelP) is a cross‐platform free open‐source program developed to estimate molecular and reaction properties from electronic structure data. To date, three computational chemistry software formats are supported (Gaussian, GAMESS, and NWChem). Some key features are: gas‐phase molecular thermodynamic properties (offering hindered rotor treatment), thermal equilibrium constants, transition state theory rate coefficients (transition state theory (TST), variational transition state theory (VTST)) including one‐dimensional (1D) tunnelling effects (Wigner, and Eckart) and Rice‐Ramsperger‐Kassel‐Marcus (RRKM) rate constants, for elementary reactions with well‐defined barriers. KiSThelP is intended as a working tool both for the general public and also for more expert users. It provides graphical front‐end capabilities designed to facilitate calculations and interpreting results. KiSThelP enables to change input data and simulation parameters directly through the graphical user interface and to visually probe how it affects results. Users can access results in the form of graphs and tables. The graphical tool offers customizing of 2D plots, exporting images and data files. These features make this program also well‐suited to support and enhance students learning and can serve as a very attractive courseware, taking the teaching content directly from results in molecular and kinetic modelling. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
分子力场进展   总被引:4,自引:0,他引:4  
分子力学(简称MM)是近年来化学家常用的一种计算方法。与量子力学从头计算和半经验方法相比,用分子力学处理大分子可以大大节省计算时间,而且,在大多数情况下,用分子力学方法计算得到的分子几何构型参数与实验值之间的差值可在实验误差范围之内。所以,分子力学是研究生物化学体系的有效和可行的手段。分子力学的核心是分子力场。本文介绍了分子力场的量子力学背景、分子力场和光谱力场之间的关系。分子力场的一般形式、分力  相似文献   

12.
The use of a computational docking protocol in conjunction with a protein homology model to derive molecular alignments for Comparative Molecular Field Analysis (CoMFA) was examined. In particular, the DOCK program and a model of the herbicidal target site, photosystem II (PSII), was used to derive alignments for two PSII inhibitor training sets, a set of benzo- and napthoquinones and a set of butenanilides. The protein design software in the QUANTA molecular modeling package was used to develop a homology model of spinach PSII based on the reported amino acid sequence and the X-ray crystal structure of the purple bacterium reaction center. The model is very similar to other reported PSII protein homology models. DOCK was then used to derive alignments for CoMFA modeling by docking the inhibitors in the PSII binding pocket. The molecular alignments produced from docking yielded highly predictive CoMFA models. As a comparison, the more traditional atom-atom alignments of the same two training sets failed to produce predictive CoMFA models. The general utilities of this application for homology model refinement and as an alternative scoring method are discussed.  相似文献   

13.
By employing a modified protocol of the Molecular Mechanics with Poisson-Boltzmann Surface Area (MM-PBSA) methodology we substantially decrease the required computation time for calculating relative estimates of protein-ligand binding affinities. The modified method uses a generalized Born implicit solvation model during molecular dynamics to enhance conformational sampling as well as a very efficient Poisson-Boltzmann solver and a computational design based on a distributed-computing paradigm. This construction allows for reduction of the computational cost of the calculations by roughly 2 orders of magnitude compared to the traditional formulation of MM-PBSA. With this high-throughput version of MM-PBSA we show that one can produce efficient physics-based estimates of relative binding free energies with reasonable correlation to experimental data and a total computation time that is sufficiently low such that an industrially relevant throughput can be realized given currently accessible computing resources. We demonstrate this approach by performing a comparison of different MM-PBSA implementations on a set of 18 ligands for the protein target urokinase.  相似文献   

14.
Gabedit is a freeware graphical user interface, offering preprocessing and postprocessing adapted (to date) to nine computational chemistry software packages. It includes tools for editing, displaying, analyzing, converting, and animating molecular systems. A conformational search tool is implemented using a molecular mechanics or a semiempirical potential. Input files can be generated for the computational chemistry software supported by Gabedit. Some molecular properties of interest are processed directly from the output of the computational chemistry programs; others are calculated by Gabedit before display. Molecular orbitals, electron density, electrostatic potential, nuclear magnetic resonance shielding density, and any other volumetric data properties can be displayed. It can display electronic circular dichroism, UV–visible, infrared, and Raman‐computed spectra after a convolution. Gabedit can generate a Povray file for geometry, surfaces, contours, and color‐coded planes. Output can be exported to a selection of popular image and vector graphics file formats; the program can also generate a series of pictures for animation. Quantum mechanical electrostatic potentials can be calculated using the partial charges on atoms, or by solving the Poisson equation using the multigrid method. The atoms in molecule charges can also be calculated. Gabedit is platform independent. The code is distributed under free open source X11 style license and is available at http://gabedit.sourceforge.net/ . © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
Molecular dynamics simulations and quantum mechanics/molecular mechanics calculations were performed on the in silico Leu597Ala/Ile663Ala double mutant of rabbit ALOX15 (12/15 lipoxygenase). The computational results suggested that subtle steric hindrance by the conserved Leu597 and C‐terminal Ile663 residues disturbed H10 abstractions in wildtype ALOX15 (which abstracts H13), but if these two bulky residues were mutated to smaller ones, H10 abstraction was no longer impeded and the regioselectivity of the initial H‐abstraction step was changed. However, site‐directed mutagenesis with HPLC analysis of the products of the whole oxidation process showed that the regioselectivity of the hydroperoxidation was not altered. This disagreement may be explained by the conformational reorganization of the system needed to rotate the ?OO. group from an antarafacial to a suprafacial arrangement prior to back‐hydrogen transfer. After H10 abstraction and O2 insertion, the evolution of the peroxy radical at C12 was sterically impeded, whereas peroxyl group rotation at C15 (after H13 abstraction) could easily evolve to a suprafacial arrangement, which thus led to the final product. For this reason, the global regiospecificity was not affected in the mutant. These findings exemplify that the regioselectivity of initial hydrogen abstraction and the regioselectivity of the final product do not necessarily coincide (in fact, they can be opposite) for the hydroperoxidation of arachidonic acid catalyzed by a lipoxygenase.  相似文献   

16.
GridMol: a grid application for molecular modeling and visualization   总被引:2,自引:0,他引:2  
In this paper we present GridMol, an extensible tool for building a high performance computational chemistry platform in the grid environment. GridMol provides computational chemists one-stop service for molecular modeling, scientific computing and molecular information visualization. GridMol is not only a visualization and modeling tool but also simplifies control of remote Grid software that can access high performance computing resources. GridMol has been successfully integrated into China National Grid, the most powerful Chinese Grid Computing platform. In Section “Grid computing” of this paper, a computing example is given to show the availability and efficiency of GridMol. GridMol is coded using Java and Java3D for portability and cross-platform compatibility (Windows, Linux, MacOS X and UNIX). GridMol can run not only as a stand-alone application, but also as an applet through web browsers. In this paper, we will present the techniques for molecular visualization, molecular modeling and grid computing. GridMol is available free of charge under the GNU Public License (GPL) from our website: Contact:   相似文献   

17.
Summary S-adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase, EC 3.3.1.1.), a specific target for antiviral drug design, catalyzes the hydrolysis of AdoHcy to adenosine (Ado) and homocysteine (Hcy) as well as the synthesis of AdoHcy from Ado and Hcy. The enzyme isolated from different sources has been shown to contain tightly bound NAD+.Based on the 2.0 Å-resolution X-ray crystal structure of dogfish lactate dehydrogenase (LDH), which is functionally homologous to AdoHcy hydrolase, and the primary sequence of rat liver AdoHcy hydrolase, we have derived a molecular model of an extended active site for AdoHcy hydrolase. The computational mutation was performed using the software MUTAR (Yeh et al., University of Kansas, Lawrence), followed by molecular mechanics optimizations using the programs AMBER (Singh et al., University of California, San Francisco) and YETI (Vedani, University of Kansas). Solvation of the model structure was achieved by use of the program SOLVGEN (Jacober, University of Kansas); 56 water molecules were explicitly included in all refinements. Some of these may be involved in the catalytic reaction.We also studied a model of the complex of AdoHcy hydrolase with NAD+, as well as the ternary complexes of the redox reaction catalyzed by AdoHcy hydrolase and has been used to differentiate the relative binding strength of inhibitors.  相似文献   

18.
The successful elucidation of an unknown compound's molecular structure often requires an analyst with profound knowledge and experience of advanced spectroscopic techniques, such as Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. The implementation of Computer‐Assisted Structure Elucidation (CASE) software in solving for unknown structures, such as isolated natural products and/or reaction impurities, can serve both as elucidation and teaching tools. As such, the introduction of CASE software with 112 exercises to train students in conjunction with the traditional pen and paper approach will strengthen their overall understanding of solving unknowns and explore of various structural end points to determine the validity of the results quickly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Alanine scanning mutagenesis of protein-protein interfacial residues can be applied to a wide variety of protein complexes to understand the structural and energetic characteristics of the hot-spots. Binding free energies have been estimated with reasonable accuracy with empirical methods, such as Molecular Mechanics/Poisson-Boltzmann surface area (MM-PBSA), and with more rigorous computational approaches like Free Energy Perturbation (FEP) and Thermodynamic Integration (TI). The main objective of this work is the development of an improved methodological approach, with less computational cost, that predicts accurately differences in binding free energies between the wild-type and alanine mutated complexes (DeltaDeltaG(binding)). The method was applied to three complexes, and a mean unsigned error of 0.80 kcal/mol was obtained in a set of 46 mutations. The computational method presented here achieved an overall success rate of 80% and an 82% success rate in residues for which alanine mutation causes an increase in the binding free energy > 2.0 kcal/mol (warm- and hot-spots). This fully atomistic computational methodological approach consists in a computational Molecular Dynamics simulation protocol performed in a continuum medium using the Generalized Born model. A set of three different internal dielectric constants, to mimic the different degree of relaxation of the interface when different types of amino acids are mutated for alanine, have to be used for the proteins, depending on the type of amino acid that is mutated. This method permits a systematic scanning mutagenesis of protein-protein interfaces and it is capable of anticipating the experimental results of mutagenesis, thus guiding new experimental investigations.  相似文献   

20.
The hydrogen‐capping method is one of the most popular and widely used coupling‐schemes for quantum mechanics/molecular mechanics (QM/MM)‐molecular dynamics simulations of macromolecular systems. This is mostly due to the fact that it is fairly convenient to implement and parametrize, thus providing an excellent compromise between accuracy and computational effort. In this work, a viable and straight‐forward approach to optimize the placing of the link atom on a suitable distance ratio between the frontier atoms is discussed. To further increase the accuracy, instead of global parameters for all amino acids, different parameter sets for each type of amino acid are derived. The dependency of the link bond parameters on the chemical environment and the used QM‐method is probed to assess the range of applicability of the parametrization. Suitable sets of parameters for RI‐MP2, B3LYP, (RI)‐B3LYP‐D3, and RI‐BLYP‐D3 at triple‐zeta level for all relevant proteinogenic amino acids are presented. Furthermore, the scope and range of the perturbation, stemming from the introduction of link bonds is evaluated through application of the presented QM/MM scheme in calculations of the active site of 15S‐lipoxygenase. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号