首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
Microwave heating was applied to synthesize copper colloidal nanoparticles by a polyol method that exploits the chelating and reducing power of a polidentate alcohol (diethylenglycol). The synthesis was carried out in the presence of eco-friendly additives such as ascorbic acid (reducing agent) and polyvinylpirrolidone (chelating polymer) to improve the reduction kinetics and sols stability. Prepared suspensions, obtained with very high reaction yield, were stable for months in spite of the high metal concentration. In order to optimize suspensions, synthesis parameters were modified and the effects on particle size, optical properties, and reaction yield were investigated. XRD analysis, scanning transmission electron microscopy (STEM), and DLS measurements confirmed that prepared sols consist of crystalline metallic copper with a diameter ranging from 45 to 130 nm. Surface plasmon resonance (SPR) of Cu nanoparticles was monitored by UV–Vis spectroscopy and showed both a red shift and a band weakening due to nanoparticle diameter increase. Microwave use provides rapid, uniform heating of reagents and solvent, while accelerating the reduction of metal precursors and the nucleation of metal clusters, resulting in monodispersed nanostructures. The proposed microwave-assisted synthesis, also usable in large-scale continuous production, makes process intensification possible.  相似文献   

2.
We report the effective fabrication of two-dimensional (2D) arrays of submicron colloidal particles. These colloidal arrays are produced in thin layers of monodisperse colloid suspensions on flat surfaces of solids such as clean glass or cleaved mica. The process of colloid assembling includes two steps, nucleation and growth, similar to those found in crystallization in solution but each of the steps in detail progresses with different mechanisms. The nucleation process is initiated by a special kind of capillary force acting parallel to the surface. The growth is guided by a laminar flow of water to the crystals, which is driven by water evaporation from 2D arrays. What is distinguishable in the 2D assembling is its active nature governed by the forces and flows, making a contrast to the diffusive mechanism in ordinary crystallization. With this two-step mechanism, a domain of hexagonally packed colloidal array can grow with time. A large and uniform film of particle monolayer is, thus, formed in a short period, from several seconds up to several minutes depending on the conditions controlled.  相似文献   

3.
A new chemical vapor deposition (CVD) method, called ionization CVD, was developed, to produce non-agglomerated nanoparticles in which reactant gases are charged. A sonic-jet corona discharger was used as an ionizer in the developed nanoparticle generator. For a tetraethylorthosilicate (TEOS)/O2 chemical system, SiO2 nanoparticles were prepared. All particles formed by the ionization CVD were charged unipolarly. SEM micrographs of particles showed that the repulsive Coulombic force between charged particles reduces their coagulation rate and produces non-agglomerated nanoparticles that have a relatively high number concentration and small size. An external field was used to collect the charged particles onto Si wafers. These collected samples indicated that the deposition of charged particles could be controlled by the external electric field. Particle concentration measurement with a condensation nucleus counter at various TEOS concentrations suggested the particle formation mechanism in the ionization CVD was an ion-induced nucleation.  相似文献   

4.
为探究闪蒸喷雾冷却的微观机理, 设计并搭建了液滴悬挂式真空闪蒸实验装置, 利用可视化窗口探究Tween20 液滴闪蒸过程中的闪蒸特性及气泡生长机理. 液滴在快速降压过程中形态会经历气泡成核、气泡生长、伴随气泡生长、爆裂这四个阶段的变化, 并反复循环这一过程直至液滴稳定蒸发. 对于液滴温度的变化, 闪蒸室的终态压力起到了决定性的作用, 并且其终态温度随压力的升高明显上升. 同时通过液滴闪蒸过程形态图分析发现, 液滴在剧烈爆炸阶段其温度也发生明显下降; 在稳定蒸发阶段, 其温度也将开始稳定不变. 因此可知液滴的剧烈爆炸会带走其自身的大量热量. 而 Tween20 浓度对液滴温度的影响微乎其微, 但其会使液滴内气泡的初始成核时间发生明显滞后, 并抑制液滴内的气泡发生破裂.  相似文献   

5.
In separation processes, the knowledge of particle size and density arc often not enough to describe the settling behaviour in a concentrated suspension. Therefore, a direct method for the characterization of the settling behavior of submicron particles in concentrated suspensions is introduced in a centrifugal field by a manometric sedimentation analysis. By means of this cumulative method in a homogeneous suspension, the analyses of both the interfacial settling rate and the settling rate of the particles within the concentrated suspension are possible. This permits a differential examination of settling processes in a broad concentration range. First, the influence of the solid concentration on the settling rate at the interface and within a monodisperse suspension with a range from 0.01 to 30 vol.% is represented. The relationship between the increase in settling rate through particles settling in a cluster and a concentration decrease in the suspension is also represented. Consideration of the possibilities of the analysis of polydisperse suspensions demonstrates the field of applications for this method.  相似文献   

6.
In recent years, polymer nanoparticles have been investigated with great interest due to their potential applications in the fields of electronics, photonics, and biotechnology. Here, we report the spontaneous formation of polymer nanoparticles from a clear solution containing a nonvolatile poor solvent by slow evaporation of a volatile good solvent. During evaporation of the good solvent, the solution gradually turns turbid. After evaporation, polymer nanoparticles of homogeneous shape and size are dispersed in the poor solvent. Homogeneous nucleation and successive growth of polymer particles takes place during the dynamic nonequilibrium process of solvent evaporation. The size of the particles, ranging from tens of nanometers to micrometer scale, depends on both polymer concentration and the solvent mixing ratio. Because of the physical generality of the particle formation mechanism, this procedure is applicable to a wide variety of polymers with suitable combinations of solvents. Here, we also show unique features, surface structures and surface properties of polymer nanoparticles prepared by this method.  相似文献   

7.
报道了聚丙烯胺稳定的球形和棒状铜纳米粒子的制备方法。在水溶液中空气条件下,通过水合肼还原二价铜离子到铜纳米粒子。聚丙烯胺的作用除稳定粒子防止聚集外,也可使粒子分散在水溶液中。该法的优点是在室温下,无需惰性气体保护,即可制备水溶液中分散的铜纳米粒子。紫外光谱和透射电镜监测了铜纳米粒子的生长过程。发现氢氧化钠的用量,聚丙烯胺浓度,反应时间等因素都影响到铜纳米粒子的组成,尺寸,形貌和聚集程度。氢氧化钠用量决定了制备粒子的组成成分是铜或氧化亚铜。所制备的球形铜纳米粒子表现出优良的表面增强拉曼散射活性。  相似文献   

8.
We discuss the dependence of the color of low-concentrated nanoparticle systems on particle size and mass concentration for Ag, Au and TiN nanoparticles, which exhibit a surface plasmon polariton resonance in extinction spectra. Comparison is made with color data obtained for Ag and Au colloidal suspensions. When particles lump into aggregates, the splitting of the surface plasmon resonance into new resonances affects the extinction of light and, hence, the color of the particle assembly. This is demonstrated for aggregated colloidal suspensions of Ag and Au nanoparticles. Finally, for highly concentrated assemblies such as pigment films, we discuss the dependence of the color in diffuse reflectance and transmittance according to Kubelka and Munk (P. Kubelka, F. Munk: Z. Techn. Phys. 12, 593 (1931)), and extend this model by using optical properties of aggregates of spheres. Received: 2 July 2001 / Published online: 10 October 2001  相似文献   

9.
The size control of materials is of great importance in research and technology because materials of different size and shape have different properties and applications.This paper focuses on the synthesis of hydroxyapatite in ultrasound fields of different frequencies and intensities with the aim to find the conditions which allow control of the particles size. The results are evaluated by X-ray diffraction, Transmission Electron Microscopy, morphological and sedimentation analyses. It is shown that the hydroxyapatite particles synthesized at low intensity non-cavitation regime of ultrasound have smaller size than those prepared at high intensity cavitation regime. The explanation of observed results is based on the idea of formation of vortices at the interface between phosphoric acid and calcium hydroxide solution where the nucleation of hydroxyapatite particles is taken place. Smaller vortices formed at high frequency non-cavitation ultrasound regime provide smaller nucleation sites and smaller resulting particles, compared to vortices and particles obtained without ultrasound. Discovered method has a potential of industrial application of ultrasound for the controlled synthesis of nanoparticles.  相似文献   

10.
An UV-enhanced single-step chemical bath process has been defined to produce precisely tailored colloidal solutions of silver nanoparticles capped with poly(methacrylic acid) (PMA) for bio-technological and packaging applications. The influence of the main process parameters on the nanoparticles chemical and structural characteristics, as well as on the reactions involved in the nanoparticle growth and polymer cross-linking, has been examined in details. A clear distinction between nanoparticle nucleation and growth, mediated by the available polymer functional groups and steric properties, has allowed to set up an effective controllable process and to obtain the desired colloids. The proper choice of the process parameters has led to a silver nanoparticles size smaller than 20 nm with a distribution peaked at less than 10 nm and stable over a period of one month.  相似文献   

11.
The sizes, shapes, and growth rates of gold and silver nanoparticles stabilized with polyvinylpyrrolidone in water can be controlled by using picosecond laser pulses. The nucleation of small metal clusters formed with NaBH4 addition to produce nanoparticles takes two months with aging but 30 min with laser irradiation. Laser pulses can also induce nanoparticles to have narrow size and shape distribution or to undergo aggregation into much larger particles. The latter process is more likely found when the metal is silver or the irradiation wavelength is short. Laser-induced growth and shape transformation processes are explained in terms of BH4 depletion, metal fusion, and electron ejection followed by disintegration.  相似文献   

12.
The effects of liquid environment on nucleation, growth and aggregation of gold nanoparticles were studied. Gold nanoparticles were prepared by pulsed laser ablation in deionised water with various concentrations of ethanol and also in pure ethanol. UV/visible extinction and TEM observations were employed for characterization of optical properties and particle sizes respectively. Preparation in water results in smaller size, shorter wavelength of maximum extinction and stable solution with an average size of 6 nm. Nanoparticles in solution with low concentration ethanol up to 20 vol% are very similar to those prepared in water. In the mixture of deionised water and 40 up to 80 vol% ethanol, wavelength of maximum extinction shows a red shift and mean size of nanoparticles was increased to 8.2 nm. Meanwhile, in this case, nanoparticles cross-linked each other and formed string type structures. In ethanol, TEM experiments show a mean size of 18 nm and strong aggregation of nanoparticles. The data were discussed qualitatively by considering effects of polarity of surrounding molecules on growth mechanism and aggregation. This study provided a technique to control size, cross-linking and aggregation of gold nanoparticles via changing the nature of liquid carrier medium.  相似文献   

13.
Nanoparticles have an immense importance in various fields, such as medicine, catalysis, and various technological applications. Nanoparticles exhibit a significant depression in melting point as their size goes below ≈10 nm. However, nanoparticles are frequently used in high temperature applications such as catalysis where temperatures often exceed several 100 degrees which makes it interesting to study not only the melting temperature depression, but also how the melting progresses through the particle. Using high‐resolution transmission electron microscopy, the melting process of gold nanoparticles in the size range of 2–20 nm Au nanoparticles combined with molecular dynamics studies is investigated. A linear dependence of the melting temperature on the inverse particle size is confirmed; electron microscopy imaging reveals that the particles start melting at the surface and the liquid shell formed then rapidly expands to the particle core.  相似文献   

14.
纳米引晶法选择性生长金刚石薄膜   总被引:1,自引:0,他引:1  
通过传统的光刻工艺和纳米引晶技术,在抛光的单晶Si衬底上形成带有 超细金刚石纳米粉的引晶图案,并利用该图案与抛光Si处金刚石成核密度的巨大差异,实现 金刚石薄膜的高选择比生长。该方法具有工艺简单、沉积效率高、选择比高、对底无任何损 伤等优点。同时,这种方法很容易在不同衬底上实现金刚石薄膜的大面积选择性生长。  相似文献   

15.
The generation of a fine pattern of metallic materials from suspensions is gaining interest because it is the key to the fabrication of displays and printed circuit boards. We tested the patterns formed by two silver nanoparticle suspensions of different viscosities using electrohydrodynamic jet printing (EHDP) in the cone-jet mode. In order to produce a higher viscous suspension, we suspended silver nanoparticles with a diameter of 10 nm in DI water to which polyvinyl alcohol was added. The pattern width of the higher viscous suspension at the onset voltage of the cone-jet mode was thinner than that of the inviscid suspension. In the case of the higher viscous suspension, the sheet resistance dropped significantly (about 95%) after the thermal curing process at 200 °C for one hour. The average sheet resistance after the thermal curing process was , which is twice that of bulk silver. PACS 47.65.-d; 83.80.Hj; 66.20.+d; 47.54.-r  相似文献   

16.
We present an experimental study of self-assembled polymeric nanoparticles in the process of flash nanoprecipitation using a multi-inlet vortex mixer (MIVM). β-Carotene and polyethyleneimine (PEI) are used as a model drug and a macromolecule, respectively, and encapsulated in diblock copolymers. Flow patterns in the MIVM are microscopically visualized by mixing iron nitrate (Fe(NO3)3) and potassium thiocyanate (KSCN) to precipitate Fe(SCN) x (3−x)+. Effects of physical parameters, including Reynolds number, supersaturation rate, interaction force, and drug-loading rate, on size distribution of the nanoparticle suspensions are investigated. It is critical for the nanoprecipitation process to have a short mixing time, so that the solvent replacement starts homogeneously in the reactor. The properties of the nanoparticles depend on the competitive kinetics of polymer aggregation and organic solute nucleation and growth. We report the existence of a threshold Reynolds number over which nanoparticle sizes become independent of mixing. A similar value of the threshold Reynolds number is confirmed by independent measurements of particle size, flow-pattern visualization, and our previous numerical simulation along with experimental study of competitive reactions in the MIVM.  相似文献   

17.
Recent studies demonstrated that the process to produce metal and oxide nanoparticles by laser ablation of consolidated microparticles is a convenient and energy-efficient way to prepare nanoparticles. In this work, the novel process is applied to nanoparticle synthesis in the liquid environment and the results are compared with those by the gas-phase process. Metal and oxide nanoparticles are synthesized by pulsed laser ablation of the compacted metal microparticles using a Q-switched Nd:YAG laser in water. It is shown that the process is effective for preparing nanoparticle suspensions having relatively uniform size distributions. While the laser fluence and the degree of compaction strongly influence the size of the produced nanoparticle in air, the sedimentation time is shown to be the most critical factor to determine the mean size of the suspended particles.  相似文献   

18.
Silver-decorated silica spheres of submicrometer-sized silica spheres with a core-shell structure were obtained based on a seed-mediated growth process, where silver nanoparticles were firstly formed from reducing Ag+ to Ag0 in N,N-dimethylformamide (DMF) in the presence of poly(vinylpyrrolidone) (PVP) as protective agent under ultrasound irradiation, followed by the growth of silver shell served silver nanoparticles as nucleation sites and formaldehyde as reducer. The results revealed that the terms of PVP addition and ultrasonic surroundings had great influence on the fabrication of silver seeds.  相似文献   

19.
Absence of emission concentration quenching accompanied by high emission efficiency in a solid state is highly challenging though very attractive, for example, for fabrication of solid state light emitters or fluorescent organic nanoparticles (FONs). Here, formation of FONs based on novel p-phenylenediacetonitrile derivatives by re-precipitation method in aqueous solutions is demonstrated. The exceptionality of the derivatives employed is manifested by nitrile groups-induced steric hindrance effects inhibiting concentration quenching of emission. Consisting of different size and polarity end-groups, phenyl groups in one compound and hexyl-carbazolyl in another, the derivatives were examined and compared in regard to nanoparticle formation morphology, size tunability, spectral signatures, and fluorescence turn-on efficiency. The variation of solvent/non-solvent ratio allowed to achieve tuning of the FON sizes from 55?nm up to 360?nm and resulted in maximal fluorescence on/off ratio of 38. Spectrally resolved confocal fluorescence microscopy revealed somewhat different molecule arrangement in different FONs suggesting dominant amorphous-like phase, which was confirmed by small angle X-ray scattering measurements. The FONs were verified to be stable against degradation or conglomeration into larger clusters at least over a couple of months thus implying their feasibility for practical applications. Finally, potential application of the fluorescent p-phenylenediacetonitrile nanoparticles for organic vapor sensing via fluorescence on/off switching was demonstrated.  相似文献   

20.
Size tuning for MoO2 nanoparticles is demonstrated for the first time over a wide range 2–100 nm, through a colloidal route into water. A nucleation‐growth mechanism based on oriented attachment is evidenced to rationalize the impact of two simple synthetic levers: reactant ratio and temperature. The smallest non‐aggregated crystalline MoO2 nanoparticles are reported, with specific surface area reaching 86 m2 g?1. Size and morphology control, along with the ability to produce, non‐aggregated ultra‐small MoO2 particles are important for a wide range of applications, such as catalysis and energy storage. To exemplify the importance of size tuning, the impact of downscaling on the electrochemical properties in Li‐ion batteries is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号