首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Auger KLn lines are observed in high-resolution electron spectra obtained in collisions of mixed-state (1s21S,1s2s3S) He-like beams of 4 MeV B3+ with H2 and 6 MeV C4+ with He targets. Supporting atomic structure calculations show these lines to correspond to doubly excited states, which can be readily populated by electron transfer to the component of the mixed-state beam. They thus provide indirect evidence for the existence of the corresponding KLn quartet states, similarly produced, even though their weak Auger decay does not allow for their direct observation in the electron spectra. These KLn quartet states mostly decay in a cascade chain of strong radiative E1 transitions, eventually terminating at the state, which is thus additionally enhanced. An upper limit on the state population due to cascades is obtained by assuming a statistical production of KLn quartet to doublet states followed by a 100% cascade feeding of the state. Our estimated upper limit is supported by our absolute cross section measurements and corresponding three-electron atomic orbital close coupling calculations in progress. Results to date are presented and discussed.  相似文献   

2.
A generalization of the Compton method for determining elements with a low atomic number Z from 1 (H) to 9 (F) by the ratio of the intensities of incoherent (Compton) and coherent (Rayleigh) scattering is proposed. The generalization takes into account not only the dependence of this ratio on the effective atomic number of the scatterer material but also the momentum transfer variable x = . The new method is based on the application of calibration function of obtained by measuring scattering spectra at two values of x1= 0.831 Å−1 and x2= 1.297 Å−1 with a WDXRF spectrometer. The elemental atomic numbers and their concentrations of binary compounds with unknown compositions are determined by the solution of a system of linear equations. Coefficients of the equations are calculated from the measured ratios for the test sample and the regularization solution for the corresponding calibration. The experiments have been carried out for standard samples of single-component, binary and triple stoichiometric compounds based on H, Li, Be, B, C, O and F. The identification of these elements was found to be possible in the absence of a relationship between the positions of scattering peaks and the composition of the sample, and a qualitative and quantitative analysis of the composition of the material was carried out as part of the solution of a single inverse problem.  相似文献   

3.
Linear properties of low-frequency electromagnetic shear Alfven waves (SAWs) are studied in quantum electron-positron-ion plasmas with effect of arbitrary temperature degeneracy for magnetized () and unmagnetized ( ) ions by using the quantum hydrodynamic model. Dispersion relations are derived for nearly degenerate () and nearly non-degenerate () plasmas. Bohm potential due to density correlation and temperature degeneracy due to Fermi–Dirac statistics of electron–positron, and their effects on the dispersion of SAWs are studied in detail both analytically and numerically. The relevance of the work regarding dense astrophysical plasmas is highlighted.  相似文献   

4.
In this paper, a plasma sheath containing primary electrons, cold positive ions, and secondary electrons is studied using a one-dimensional fluid model in which the primary electrons are described by q-non-extensive distribution according to the Tsallis statistics. Based on the Sagdeev potential method and the current balance relation, a modified sheath criterion, and floating potential are established theoretically. The effect of secondary electron emission on q-non-extensive plasma sheath characteristics have been numerically examined. A significant change is observed in the quantities characterizing the non-extensive plasma sheath with the presence of the secondary electrons. It is found that the sheath properties with super-extensive distribution and sub-extensive distribution are different compared with plasma sheath with Maxwell distribution .  相似文献   

5.
A multispecies magnetized collisional nonthermal plasma system, containing inertial ion species, noninertial electron species following nonthermal -distribution, and immobile dust particles, is considered to examine the characteristics of the dissipative dust-ion-acoustic soliton modes, theoretically and parametrically. The electrostatic solitary modes are found to be associated with the low-frequency dissipative dust-ion-acoustic solitary waves (DIASWs). The ion-neutral collision is taken into account, and the influence of ion-neutral collisional effects on the dynamics of dissipative DIASWs is investigated. It is reported that most of the plasma medium in space and laboratory are far from thermal equilibrium, and the particles in such plasma system are well fitted via the -nonthermal distribution than via the thermal Maxwellian distribution. The reductive perturbation approach is adopted to derive the damped KdV (dKdV) equation, and the solitary wave solution of the dKdV equation is derived via the tangent hyperbolic method to analyse the basic features (amplitude, width, speed, time evolution, etc.) of dissipative DIASWs. The propagation nature and also the basic features of dissipative DIASWs are seen to influence significantly due to the variation of the plasma configuration parameters and also due to the variation of the supethermality index in the considered plasma system. The implication of the results of this study could be useful for better understanding the electrostatic localized disturbances, in the ion length and time scale, in space and experimental dusty plasmas, where the presence of excess energetic electrons and ion-neutral collisional damping are accountable.  相似文献   

6.
7.
The uniform electron gas (UEG) is one of the key models for the understanding of warm dense matter—an exotic, highly compressed state of matter between solid and plasma phases. The difficulty in modelling the UEG arises from the need to simultaneously account for Coulomb correlations, quantum effects, and exchange effects, as well as finite temperature. The most accurate results so far were obtained from quantum Monte Carlo (QMC) simulations with a variety of representations. However, QMC for electrons is hampered by the fermion sign problem. Here, we present results from a novel fermionic propagator path integral Monte Carlo in the restricted grand canonical ensemble. The ab initio simulation results for the spin-resolved pair distribution functions and static structure factor are reported for two isotherms (T in the units of the Fermi temperature). Furthermore, we combine the results from the linear response theory in the Singwi-Tosi-Land-Sjölander scheme with the QMC data to remove finite-size errors in the interaction energy. We present a new corrected parametrization for the interaction energy and the exchange–correlation free energy in the thermodynamic limit, and benchmark our results against the restricted path integral Monte Carlo by Brown et al. [Phys. Rev. Lett. 110 , 146405 (2013)] and configuration path integral Monte Carlo/permutation-blocking path integral Monte Carlo by Dornheim et al. [Phys. Rev. Lett. 117 , 115701 (2016)].  相似文献   

8.
The linear properties of magnetosonic waves are studied in nearly degenerate and nearly non-degenerate quantum plasmas composed of electrons, positrons and ions in the presence of spin- effect. Using the fluid equations, a generalized dispersion relation for perpendicular and oblique propagation is derived. It is found that degree of temperature and spin degeneracy modify the dispersive properties of the given modes. The results of analysis are beneficial for understanding the collective phenomena in dense quantum astrophysical plasmas.  相似文献   

9.
Zinc K-shell radiative and radiationless transition rates are calculated using the multiconfiguration Dirac–Fock method. Correlation up to the 4p orbital is included in almost all transition rate calculations. Calculated radiative transition rates and transition probabilities are compared with Scofield's Dirac–Hartree–Slater and Dirac–Hartree–Fock calculations, presenting good agreement with the later. Radiative transition intensity ratios involving the strongest lines are compared with theoretical, experimental, and empirical-fit values. Most ratios are in close agreement with the empirical-fit values from NIST's Fundamental Parameters database. Calculated radiationless transition rates and ratios are compared with Chen et al.'s Dirac–Fock values and Safronova et al.'s Dirac–Fock values. The K-LL transition rates are overall lower than Chen et al.'s values, whereas the K-LX and K-XY transition rates are overall higher. Calculated K-LX/K-LL and K-XY/K-LL ratios are relatively close to the experimental values compared. Some calculated intensities relative to K-L are in good agreement with the experimental values, whereas others present worse agreement. The calculated fluorescence yield is higher than all theoretical, experimental, and empirical-fitted values compared, probably because the total radiationless transition rate value calculated in the present work is relatively low.  相似文献   

10.
The Landau damping of the dust ion-acoustic wave (DIAW) in a dusty plasma with non-extensive distributed components is analysed relying on the kinetic approach. The electron, ion, and dust particles are effectively modelled by the non-extensive distribution function of the Tsallis statistics. For a collisionless plasma with different values of plasma components indices, the general dispersion relation is achieved, and the non-extensivity effects on the frequency, as well as the Landau damping of the DIAW, are studied. We show that for , the preliminary results of the Maxwellian plasma are obtained. The decrease of wave damping is achieved by increasing the coefficient q index and the ion-to-electron density ratio. The damping rate also increases with an increasing ion-to-electron temperature ratio.  相似文献   

11.
At first, we present a brief review of the problem. Then, we consider plasma phase transition (PPT) as a mechanism of the first order fluid–fluid phase transition in warm dense hydrogen. The pros and cons are analysed. The properties of warm dense hydrogen are investigated by ab initio methods of molecular dynamics using the density functional theory. Strong ionization during the fluid–fluid phase transition in warm dense hydrogen makes this transition close to the prediction of the PPT. Finally, we present differences in the real phase transition from the prediction 1968–1969. Structures are observed with inter‐proton separations that are equal to the distances between protons in the and ions. The transition is not only ionization, but also structural. An analysis of the phase transition counterpart in solid hydrogen under high pressure allows us to reveal partially the character of the new structure. The ionized phase includes complex cluster ions. Van der Waals loops are of abnormal inverted form.  相似文献   

12.
We report a measurement of the two X-ray transitions that proceed from the and (1s22s1/22p63p1/2)J = 1 upper levels to the (1s22s22p6)J = 0 ground level in neonlike Eu53+ (Z = 63), that is,  near the previously documented avoided crossing of the two upper levels at Z = 68. The measurement was carried out using the calorimeter spectrometer on the Livermore EBIT-I electron beam ion trap. It affirms the trends set by the neighboring neonlike ions both in terms of the relative intensity of the two lines and in terms of the magnitude of disagreement with theoretical energy level predictions.  相似文献   

13.
The standard model has for massless quarks and leptons “miraculously” no triangle anomalies due to the fact that the sum of all possible traces — where and are the generators of one, of two or of three of the groups and U (1) — over the representations of one family of the left handed fermions and anti‐fermions (and separately of the right handed fermions and anti‐fermions), contributing to the triangle currents, is equal to zero. 1 - 4 It is demonstrated in this paper that this cancellation of the standard model triangle anomaly follows straightforwardly if the and are the subgroups of the orthogonal group , as it is in the spin‐charge‐family theory. 5 - 22 We comment on the anomaly cancellation, which works if handedness and charges are related “by hand”.  相似文献   

14.
We compute the Hodge numbers for the quotients of complete intersection Calabi‐Yau three‐folds by groups of orders divisible by 4. We make use of the polynomial deformation method and the counting of invariant Kähler classes. The quotients studied here have been obtained in the automated classification of V. Braun. Although the computer search found the freely acting groups, the Hodge numbers of the quotients were not calculated. The freely acting groups, G, that arise in the classification are either or contain , , or as a subgroup. The Hodge numbers for the quotients for which the group G contains or have been computed previously. This paper deals with the remaining cases, for which or . We also compute the Hodge numbers for 99 of the 166 CICY's which have quotients.  相似文献   

15.
A new class is introduced of M2‐branes solutions of d=11 supergravity that include internal fluxes obeying Englert equation in 7‐dimensions. A simple criterion for the existence of Killing spinors in such backgrounds is established. Englert equation is viewed as the generalization to d=7 of Beltrami equation defined in d=3 and it is treated accordingly. All 2‐brane solutions of minimal d=7 supergracity can be uplifted to d=11 and have supersymmetry. It is shown that the simple group PSL(2, 7) is crystallographic in d=7 having an integral action on the A7 root lattice. By means of this point‐group and of the T7 torus obtained quotiening with the A7 root lattice we were able to construct new M2 branes with Englert fluxes and . In particular we exhibit here an solution depending on 4‐parameters and admitting a large non abelian discrete symmetry, namely . The dual field theories have the same symmetries and have complicated non linear interactions.  相似文献   

16.
We review and develop the general properties of algebras focusing on the gauge structure of the associated field theories. Motivated by the homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the structure of general gauge invariant perturbative field theories. We sketch such formulations for non‐abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full algebra for the interacting theory. The analysis suggests that algebras provide a classification of perturbative gauge invariant classical field theories.  相似文献   

17.
The scale invariant gravity theory coupled to conformally invariant matter is investigated. We show that in the non‐supersymmetric case the conformally coupled scalars belong to an manifold, while in the supersymmetric case the scalar manifold becomes isomorphic to the Kählerian space =. In both cases when the underlying scale symmetry is preserved the vacuum corresponds to de Sitter space. Once the scale symmetry is broken by quantum effects, a transition to flat space becomes possible. We argue that the scale violating terms are induced by anomalies related to a symmetry. The anomaly is resolved via the gauging of a Peccei‐Quinn axion shift symmetry. The theory describes an inflationary transition from de Sitter to flat Minkowski space, very similar to the Starobinsky inflationary model. The extension to metastable de Sitter superstring vacua is also investigated. The scalar manifold is extended to a much richer manifold, but it contains always as a sub‐manifold. In superstrings the metastability is induced by axions that cure the anomalies in chiral (or even ) supersymmetric vacua via a Green‐Schwarz/Peccei‐Quinn mechanism generalized to four dimensions. We present some typical superstring models and discuss the possible stabilization of the no‐scale modulus.  相似文献   

18.
19.
In this paper we define the analogue of Calabi–Yau geometry for generic , flux backgrounds in type II supergravity and M‐theory. We show that solutions of the Killing spinor equations are in one‐to‐one correspondence with integrable, globally defined structures in generalised geometry. Such “exceptional Calabi–Yau” geometries are determined by two generalised objects that parametrise hyper‐ and vector‐multiplet degrees of freedom and generalise conventional complex, symplectic and hyper‐Kähler geometries. The integrability conditions for both hyper‐ and vector‐multiplet structures are given by the vanishing of moment maps for the “generalised diffeomorphism group” of diffeomorphisms combined with gauge transformations. We give a number of explicit examples and discuss the structure of the moduli spaces of solutions. We then extend our construction to and flux backgrounds preserving eight supercharges, where similar structures appear, and finally discuss the analogous structures in generalised geometry.  相似文献   

20.
We discuss the possible realisation in string/M theory of the recently discovered family of four‐dimensional maximal gauged supergravities, and of an analogous family of seven‐dimensional half‐maximal gauged supergravities. We first prove a no‐go theorem that neither class of gaugings can be realised via a compactification that is locally described by ten‐ or eleven‐dimensional supergravity. In the language of Double Field Theory and its M theory analogue, this implies that the section condition must be violated. Introducing the minimal number of additional coordinates possible, we then show that the standard S 3 and S 7 compactifications of ten‐ and eleven‐dimensional supergravity admit a new class of section‐violating generalised frames with a generalised Lie derivative algebra that reproduces the embedding tensor of the and gaugings respectively. The physical meaning, if any, of these constructions is unclear. They highlight a number of the issues that arise when attempting to apply the formalism of Double Field Theory to non‐toroidal backgrounds. Using a naive brane charge quantisation to determine the periodicities of the additional coordinates restricts the gaugings to an infinite discrete set and excludes all the gaugings other than the standard one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号