首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The selective transport of ions has crucial importance in biological systems as well as modern‐day energy devices, such as batteries and fuel cells, and water purification membranes. Control over ion movement can be exerted by ligation, ion channel dimensions, solvation, and electrostatic interactions. Polyelectrolyte hydrogels can provide aligned pathways for counter ion transport but lack mechanical integrity, while polyelectrolyte membranes typically suffer from the absence of an ion transport channel network. To develop polymer membranes for improved ion transport, we present the design of a novel material that combines the advantages of aligned pathways found in polyelectrolyte hydrogel and mechanical robustness in conventional membranes. The ionic species were organized via controlled copolymerization of a quaternizable monomer. Additionally, dimensional stability was then incorporated through a cast/crosslinking method to lock in the network of connected cationic groups. This strategy resulted in dramatically enhanced ion transport, as characterized by ionic conductivities (>80 mS/cm for Cl, and ∼200 mS/cm for OH). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 618–625  相似文献   

2.
Solar energy can be harvested by biological systems to regulate the directional transport of protons and ions across cells and organelles. Structural and functional bio-mimic photo-active ion nanofluidic conductors, usually in the forms of ion channels and ion pumps, have been increasingly applied to realize active ion transport. However, progress in attaining effective light-driven active transport of ions (protons) has been constrained by the inherent limitations of membrane materials and their chemical and topological structures. Recent advances in the construction of photo-responsive physical ion pump in all-solid-state membranes could potentially lead to new classes of membrane-based materials for active ion transport. In this concept, the development of the state-of-the-art technologies for manufacturing artificial light-driven active ion transport systems are presented and discussed, which mainly involves the utilization of solar energy to realize two types of active ion transport, chemically and physically active ion transport. Afterward, we summarize the key factors towards culminating highly effective and selective membranes for active ion transport. To conclude, we highlight the promising application perspectives of this light-driven active ion transport technique in the field of energy conversion, bio-interfaces and water treatment.  相似文献   

3.
4.
Both nanostructured materials and nanotubes hold tremendous promises for separation and purification applications, such as water desalination. By using molecular dynamics, herein, we compare the transport of aqueous electrolyte solutions through a Y‐zeolite, which features interconnected, tortuous sub‐nanometer nanopores, and a model silica nanotube, which has the same composition but is straight and has much lower surface complexity. In the Y‐zeolite, ion transport is faster than the transport of water molecules, thus leading to a phenomenon of phase separation in which a gradient of salt concentration is generated along the flow direction. However, similar transport characteristics and phase separation are not found in the model silica nanotube. Detailed analysis suggests that, in nanochannels with complicated geometries, such as those of the Y‐zeolite, the structural and flow characteristics of confined nanofluids are highly coupled, thus influencing the transport of ions and solvents and causing the phenomenon of phase separation.  相似文献   

5.
The behaviour of bipolar membranes in NaCl and Na2SO4 solutions is discussed. The membranes are characterized in terms of their limiting current densities. Below the limiting current density the electric current is carried by salt ions migrating from the transition region between the anion and the cation exchange layer of the bipolar membrane. In steady state these ions are replaced by salt ions transported from the bulk solutions into the transition region by diffusion and migration due to the fact that the ion-exchange layers are not strictly permselective. When the limiting current density is exceeded, the salt transport from the transition region can no longer be compensated by the transport into the region and a drastic increase in the membrane resistance and enhanced water dissociation is observed. This water dissociation is described as being a combination of the second Wien effect and the protonation and deprotonation of functional groups in the membrane. The limiting current density is calculated from a mass balance that includes all components involved in the transport. The parameters used in the mathematical treatment are the diffusion coefficients of salt ions and water, the ion mobilities in the membrane, the fixed charge densitiy of the membrane, the pKb values of the functional groups and the solution bulk concentrations.  相似文献   

6.
Highly charged cation permeable composite membranes were prepared by blending of sulfonated poly(ether sulfone) (SPES) with sulfonated poly(ether ether ketone) (SPEEK) in 0 to 90% weight ratio, to adjust the hydrophobic properties and ion selective nature. Extent of sulfonation was confirmed by 1H NMR and ion exchange capacity and degree of sulfonation depending on blending composition. These membranes were characterized as a function of weight fraction of SPEEK by recording ion-exchange capacity, water uptake, thermogravimetric analysis, membrane conductivity and membrane potential in equilibration with different electrolytic solutions. Membrane permselectivity and solute flux were estimated using these data on the basis of non-equilibrium thermodynamic principles and for observing the selectivity of different membranes for mono- or bivalent counter-ions. It was observed that relative selectivity for monovalent in comparison to bivalent counter-ions were increased with the decrease in SPEEK content in the composite membrane matrix. The range of SPEEK content in the blend from 60 to 80% appears the most suitable for the selective separation of monovalent ions from bivalent ions. Furthermore, highly charged nature and stabilities of these membranes extend their applications for the electro-assisted separations of similarly charged ions as well as other electro-membrane processes.  相似文献   

7.
This study examines how conditions for modifying homogeneous MF-4SK and heterogeneous MK-40 membranes with tetraethoxysilane affect membrane properties. The microstructure of the bulk membrane and its surface, both before and after exposure to the modifying agent, is examined by scanning electron microscopy, spark spectrophotometry, and standard contact porosimetry. The process of sodium chloride concentration by electrodialysis with hybrid organic-inorganic membranes in cells with noncirculating concentration compartments is investigated, and a mathematical model of the concentration process by electrodialysis is used to determine transport properties: current efficiency, diffusion and osmotic permeabilities, and the salt hydration number. For highly hydrophilic membranes, it is shown that water transport occurs both in ion hydration shells and also as free water. It is established that after modified membranes undergo additional heat treatment, the transport of free water ceases, and the water transport number decreases. This is in accord with an increase in the salt content of the concentrate during concentration by electrodialysis.  相似文献   

8.
Protein pores that selectively transport ions across membranes are among nature’s most efficient machines. The selectivity of these pores can be exploited for ion sensing and water purification. Since it is difficult to reconstitute membrane proteins in their active form for practical applications it is desirable to develop robust synthetic compounds that selectively transport ions across cell membranes. One can envision tuning the selectivity of pores by incorporating functional groups inside the pore. Readily accessible octapeptides containing (aminomethyl)benzoic acid and alanine are reported here that preferentially transport cations over halides across the lipid bilayer. Ion transport is hypothesized through pores formed by stable assemblies of the peptides. The aromatic ring(s) appear to be proximal to the pore and could be potentially utilized for functionalizing the pore interior.  相似文献   

9.
We present extensive molecular dynamics simulations of the ion distributions for DNA duplexes and DNA clusters using the Amber force field with implicit water. The distribution of ions and the electrostatic energy of ions around an isolated DNA duplex and clusters of DNA duplexes in different salt (NaCl) concentrations over the range 0.2-1.0 mol/L are determined on the basis of the simulation results. Using the electrostatic energy profile, we determine a local net charge fraction phi, which is found to increase with increasing of salt concentration. For DNA clusters containing two DNA duplexes (DNA pair) or four DNA duplexes, phi increases as the distance between the duplexes decreases. Combining this result with experimental results for the dependence of the DNA melting temperature on bulk salt concentration, we conclude that for a pair of DNA duplexes the melting temperature increases by 5-10 K for interaxis separations of 25-40 A. For a cluster of four DNA duplexes, an even larger melting temperature increase should occur. We argue that this melting temperature increase in dense DNA clusters is responsible for the cooperative melting mechanism in DNA-linked nanoparticle aggregates and DNA-linked polymer aggregates.  相似文献   

10.
Designing carbon nanotube membranes for efficient water desalination   总被引:5,自引:0,他引:5  
The transport of water and ions through membranes formed from carbon nanotubes ranging in diameter from 6 to 11 A is studied using molecular dynamics simulations under hydrostatic pressure and equilibrium conditions. Membranes incorporating carbon nanotubes are found to be promising candidates for water desalination using reverse osmosis, and the size and uniformity of tubes that is required to achieve a desired salt rejection is determined. By calculating the potential of mean force for ion and water translocation, we show that ions face a large energy barrier and will not pass through the narrower tubes studied ((5,5) and (6,6) "armchair" type tubes) but can pass through the wider (7,7) and (8,8) nanotubes. Water, however, faces no such impediment due to the formation of stable hydrogen bonds and crosses all of the tubes studied at very large rates. By measuring this conduction rate under a hydrostatic pressure difference, we show that membranes incorporating carbon nanotubes can, in principle, achieve a high degree of desalination at flow rates far in excess of existing membranes.  相似文献   

11.
Ionic rectifier membranes or devices generate uni-directional ion transport to convert an alternating current (AC) ion current input into stored energy or direct current (DC) in the form of ion/salt gradients. Electrochemical experiments 80 years ago were conducted on biological membrane rectifier systems, but today a plethora of artificial ionic rectifier types has been developed and electroanalytical tools are employed to explore mechanisms and performance. This overview focuses on microscale ionic rectifiers with a comparison to nano- and macroscale ionic rectifiers. The potential is surveyed for applications in electrochemical analysis, desalination, energy harvesting, electrochemical synthesis, and in selective ion extraction.  相似文献   

12.
Bipolar membranes (BPMs) are catalytic membranes for electro-membrane processes splitting water into protons and hydroxyl ions. To improve selectivity and current efficiency of BPMs, we prepare new asymmetric BPMs with reduced salt leakages. The flux of salt ions across a BPM is determined by the co-ion transport across the respective layer of the membrane. BPM asymmetry can be used to decrease the co-ion fluxes through the membrane and shows that the change of the layer thickness and charge density of the corresponding ion exchange layer determines the co-ion flux. The modification of a commercial BP-1 with a thin additional cation exchange layer on the cationic side results in a 47% lower salt leakage. Thicker layers result in water diffusion limitations. In order to avoid water diffusion limitations we prepared tailor made BPMs with thin anion exchange layers, to increase the water flux into the membrane. Therefore a BPM could be prepared with a thick cation exchange layer showing a 62% decreased salt ion leakage through the cationic side of the membrane.  相似文献   

13.
Water swollen polymer networks are attractive for applications ranging from tissue regeneration to water purification. For water purification, charged polymers provide excellent ion separation properties. However, many ion exchange membranes (IEMs) are brittle, necessitating the use of thick support materials that ultimately decrease throughput. To this end, novel double network hydrogels (DNHs) with variable water content are prepared and characterized in terms of mechanical and ion transport properties to evaluate their potential utility as tough membrane materials. The first network contains fixed anionic charges, while the other is comprised of a copolymer with varied ratios of hydrophobic ethyl acrylate (EA) and hydrophilic dimethyl acrylamide (DMA) repeat units. Characterization of freestanding DNH films reveals a reduction in water content from 88 to 53 wt% and a simultaneous increase in ultimate stress and strain by ~3.5× and ~4.5×, respectively, for 95%/5% EA/DMA, relative to 100% DMA. Fundamental salt transport properties relevant to water purification, including permeability, solubility, and diffusivity, are measured and systematically compared with conventional membrane materials to inform the development of DNHs for membrane applications. The ability to simultaneously reduce water content and increase mechanical integrity highlights the potential of DNHs as a synthetic platform for future membrane applications.  相似文献   

14.
Natural Aquaporin (AQP) channels are efficient water translocating proteins, rejecting ions. Inspired by this masterpiece of nature, Artificial Water Channels (AWCs) with controlled functional structures, can be potentially used to mimic the AQPs to a certain extent, offering flexible avenues toward biomimetic membranes for water purification. The objective of this paper is to trace the historical development and significant advancements of current reported AWCs. Meanwhile, we attempt to reveal important structural insights and supramolecular self-assembly principles governing the selective water transport mechanisms, toward innovative AWC-based biomimetic membranes for desalination.  相似文献   

15.
The electrodialytic transport properties of new anion exchange membranes were evaluated that included the transport numbers of various anions, sulfate, bromide, fluoride, and nitrate ions, relative to chloride ions and current efficiency. The anion exchange membranes were prepared by the reaction of copolymer membranes crosslinked to different extents having chloromethyl groups with 4‐vinylpyridine to form a ladder‐like polymer in the membranes and then with trimethylamine to convert the remaining chloromethyl groups to benzyl trimethylammonium groups. The transport numbers of the sulfate and fluoride ions relative to the chloride ions were markedly less for the membranes that had been reacted with 4‐vinylpyridine and then with trimethylamine compared with those of the membranes that had been reacted only with trimethylamine. On the other hand, the selective permeation of nitrate and bromide ions through the membranes was enhanced by the reaction with 4‐vinylpyridine although the membranes became tighter by the reaction. The decrease in permeation of the sulfate ions was attributed to a synergistic effect involving the decrease in sulfate ions ion‐exchanged with the membranes and the decrease in mobility of the sulfate ions in the membranes with a low degree of crosslinking. Though the ion‐exchanged sulfate ion content was the lowest in the highly crosslinked membranes, the mobility ratio between the sulfate ions and chloride ions did not decrease in the membranes. However, the increase in the permeation of nitrate ions was based on the increase in the ion‐exchanged amount of nitrate ions with the membrane, and not the change in the mobility ratio between the nitrate and chloride ions. The formation of the ladder‐like polymer in the membrane matrix brought on a decrease in the hydrophilicity of the membranes due to pyridine groups and an increase in their tightness. The current efficiency of all membranes was greater than 99% during the electrodialysis of 0.50 N salt solutions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1773–1785, 1999  相似文献   

16.
In this paper, we describe the investigation of membranes to concentrate aqueous low molecular weight (<500 Da) organics streams, while removing electrolytes including divalent salts such as sodium sulfate. Such membranes would be useful in many industrial applications as currently used pressure driven process such as nanofiltration (NF) or electrical processes such as electric dialysis (ED) cannot achieve such separations and concentrations. An analysis of ion/water transport in different membranes and, selectivity and flux requirements indicated that ion exchange mosaics in the form of integrally skinned asymmetric structures could achieve the required performance. The relationship between the internal structure of the mosaic membrane elements and the required separation properties was further analyzed as a development guide. It was found that such membranes could be made by casting a homogenous solution of two mutually incompatible polymers in a common solvent, containing non-solvents and additives, followed by a chemical modification. The process of forming such membranes involves phase separation between the two polymers and the phase inversion of each polymer. In this study the membrane consists of a cation exchange asymmetric membrane with a uniform distribution of anion exchange particles in the dense integrally skin layer. The choice of polymeric materials, their molecular weights, solvent combinations and surfactants determined the membranes’ surface morphology, mosaic dimensions and particle density. In this way membranes were formed with ∼1 μm sized anion exchange particles uniformly dispersed in a thin (∼1.0 μm) cation exchange selective layer of an asymmetric membrane. The best performance to date: Fluxes of 500+LMD, 10% rejection to sodium sulfate, 90% to sucrose and >98% rejection to 400 molecular weight organic ions. The membranes also show a mosaic effect of decreasing sulfate rejection with decreasing sulfate concentration. The membranes also show a musaic effect of decreasing sulfate rejection with decreasing sulfate concentration, which is desired to perform effectively the removal of mono and bivalent ions during diafiltration.  相似文献   

17.
MXene, well-identified as Ti3C2TX, belongs to the family of two-dimensional (2D) materials, which have been currently explored in various applications. Very recently, such materials have been pointed out as potential nanomaterials for advanced solute separations when introduced in membranes, such as ion separation, gas separation, nanofiltration, chiral molecular separation, and solvent separation. This latter separation, generally named Pervaporation (PV), is identified as a highly selective technology for water separations. To date, few pieces of research have been released but providing interesting insights into several solvent (including water) separations. Hence, this brief review aims to analyze and discuss the latest advances for utilizing MXenes for PV membranes. Particular emphasis has been devoted to the relevant outcomes in the field, along with the strategies followed by researchers to tailor membranes. Based on the current findings, the perspectives in the field are also stated.  相似文献   

18.
付升  于养信  王晓琳 《化学学报》2007,65(10):923-929
假定纳滤膜具有狭缝状孔, 使用纯水透过系数、膜孔径及膜表面电势来表征纳滤膜的分离特征, 用流体力学半径和无限稀释扩散系数表征了离子特性. 采用扩展Nernst-Planck方程、Donnan平衡模型和Poisson-Boltzmann理论描述了混合电解质溶液中离子在膜孔内的传递现象, 计算了三种商用纳滤膜(ESNA1-LF, ESNA1和LES90)对同阴离子、同阳离子和含四种离子的混合电解质体系中离子的截留率, 并与实验数据进行了比较. 计算结果表明, 电解质溶液中离子在纳滤膜孔内传递的主要机理是离子的扩散和电迁移, 纳滤膜对混合电解质溶液中离子的分离效果主要由空间位阻和静电效应决定. 该模型在低浓度时对含一价离子的混合电解质溶液通过纳滤膜的截留率计算结果比较准确, 但对高浓度或含高价离子的混合电解质溶液则偏差较大.  相似文献   

19.
The interaction of two oppositely charged surfaces has been investigated using Monte Carlo simulations and approximate analytical methods. When immersed in an aqueous electrolyte containing only monovalent ions, two such surfaces will generally show an attraction at large and intermediate separations. However, if the electrolyte solution contains divalent or multivalent ions, then a repulsion can appear at intermediate separations. The repulsion increases with increasing concentration of the multivalent salt as well as with the valency of the multivalent ion. The addition of a second salt with only monovalent ions magnifies the effect. The repulsion between oppositely charged surfaces is an effect of ion-ion correlations, and it increases with increasing electrostatic coupling and, for example, a lowering of the dielectric permittivity enhances the effect. An apparent charge reversal of the surface neutralized by the multivalent ion is always observed together with a repulsion at large separation, whereas at intermediate separations a repulsion can appear without charge reversal. The effect is hardly observable for a symmetric multivalent salt (e.g., 2:2 or 3:3).  相似文献   

20.
Our recent studies in the field of ultrathin membranes prepared upon layer-by-layer assembly of various polyionic compounds such as polyelectrolytes, calixarenes and polyelectrolytes, and metal hexacyanoferrate salts such as Prussian Blue are reviewed. It is demonstrated that polyelectrolyte multilayers can be used (a) as nanofiltration and reverse osmosis membranes suitable for water softening and seawater desalination and (b) as molecular sieves and ion sieves for size-selective separation of neutral and charged aromatic compounds. Furthermore, hybrid membranes of p-sulfonato-calixarenes and cationic polyelectrolytes showing specific host-guest interactions with permeating ions are described. The membranes exhibit high selectivities for distinct metal ions. Finally, it is demonstrated that purely inorganic membranes of Prussian Blue (PB) and analogues can be prepared upon multiple sequential adsorption of transition metal cations and hexacyanoferrate anions. Due to the porous lattice of PB, the membranes are useful as ion filters able to separate cesium from sodium ions, for example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号