首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of Pd/AlF3 catalysts was prepared by an impregnation method and tested for vapor-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane(HFC-245fa) to synthesize 1,3,3,3-tetrafluoropropene(HFO-1234ze). The highest activity was obtained over Pd/AlF3 catalyst containing 1.0%(mass fraction) of Pd, with an HFC-245fa conversion of 79.5% and an HFO-1234ze selectivity of 99.4% after the reaction at 300 ℃ for 100 h. The reactivity was related to the surface acidity, as AlF3 provided active sites for the reaction. With the addition of Pd, the catalyst stability could be significantly improved. Raman spectroscopic and thermal-gravimetric analysis results reveal that there was less carbon deposit on spent Pd/AlF3 catalyst surface because Pd could effectively pyrolyse it. Thus, Pd/AlF3 catalysts were bi-functional for dehydrofluorination of HFC-245fa.  相似文献   

2.
In recent years, organic peroxides, including methyl ethyl ketone peroxide (MEKPO) and cumene hydroperoxide (CHP), have often caused thermal runaway reactions, fires, and thermal explosions worldwide. Under normal circumstances, H2O and dry fire-extinguishing chemicals are often employed to eliminate fire situations. We evaluated the thermal runaway reaction for MEKPO and CHP mixed with H2O and dry fire-extinguishing chemicals by differential scanning calorimetry, and thermal runaway reaction for CHP mixed with dry fire-extinguishing chemicals by vent sizing package 2. The results showed that ABC dry chemical, BC dry chemical, and XBC dry chemical all caused the decomposition of MEKPO to occur at lower onset temperature and H2O caused the ΔH d of MEKPO to become higher. On the other hand, H2O and XBC dry chemical induced the decomposition of CHP to occur at lower onset temperature as well as lower thermal explosion temperature. The maximum of self-heating rate ((dT/dt)max) and the maximum pressure-rise rate ((dP/dt)max) of CHP mixed with dry fire-extinguishing chemicals were measured lower than CHP alone. The results indicated that MEKPO and CHP are highly hazardous when mixed with H2O and some dry fire-extinguishing chemicals. In view of loss prevention, the results can be useful references for fire fighters dealing with thermal upsets in chemical plants.  相似文献   

3.
Ch. Huang  X. Yang  L. Lu  X. Wang 《Chemical Papers》2006,60(2):102-110
The flame retardant property of aerosols formed from 18 different nanopowders has been studied. The diameter of nanocrystalline powders was determined by XRD and TEM. The concentration of combustible gas was determined by gas chromatography. It was found that ZrO2 nanocrystalline powdered aerosol can effectively retard the burning of CH4. The flame retardation caused by ZrO2 toward the combustion reaction of methane is through an inhibitory mechanism, which was further confirmed by contrasting it with Halon extinguishing agent and flame retardant property of ZrO2-aerosol toward CH3CH2CH3 or CO. The type of nanopowder aerosols as anti-explosion and fireproof agents was researched preliminarily in theory, too. The current ZrO2-aerosol study will find extensive applications in the field of fire-extinguishing and anti-explosion agents used in case of combustible gas.  相似文献   

4.
Piperazine cyanurate (PCA) is designed and synthesized via hydrogen‐bonding self‐assembly reactions between piperazine and cyanuric acid. Chemical structure and morphology of PCA are investigated by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The prepared PCA is combined with ammonium polyphosphate (APP) to prepare flame‐retardant polypropylene (PP) composites. Thermostability, flammability, and combustion characteristics of PP composites are analyzed. The maximum thermal decomposition rate of flame‐retarded PP composites has an apparent reduction compared with that of pure PP, and obvious char is left for this intumescent flame retardant (IFR) system of APP and PCA. A high limiting oxygen index value and UL‐94 V‐0 rating are achieved with addition of APP and PCA. In cone calorimetry test, heat and smoke releases of PP are significantly decreased by this IFR system. Gaseous decomposition products during the thermal decomposition of flame‐retardant composites are studied. Chemical structure and morphology of char residues are analyzed. The results illustrate that APP and PCA have a superb synergistic action in the aspect of improvement in fire safety of PP. A possible flame‐retardant mechanism is concluded to reveal the synergism between APP and PCA.  相似文献   

5.
本文综述了目前2,3,3,3-四氟丙烯(HFO-1234yf)的合成路线,包括氟-氯交换、脱卤化氢、脱卤、脱卤醇、脱次氯酸乙酰酯、脱水、加氢脱卤、脱氢、高温热解、SF4参与的氟化反应、脱羧等。其中,以2-氯-3,3,3-三氟丙烯(HCFO-1233xf)为原料的氟-氯交换路线、以1,1,1,2,3-五氟丙烷(HFC-245eb)为原料的脱氟化氢路线和2-氯-1,1,1,2-四氟丙烷(HCFC-244bb)为原料的脱氯化氢路线均具有原料容易合成得到、容易实现气相连续化大规模生产的优势,具有工业化价值。另外,分析对这些路线拥有独立知识产权的氟化工企业现状,提出今后HFO-1234yf领域的研究重点。  相似文献   

6.
用裂解气相色谱(PyGC)考察了经三种类型阻燃剂(含磷、含溴、含溴和磷)改性的聚丙烯的热稳定性。利用PyGC-MS法分析不同样品的高温裂角产物,以此来推测阻燃材料受热分解时气相以及凝聚相所发生的反应,推断阻燃机理,分析影响阻燃效果的因素,为阻燃剂的开发提供有益参考。结果证实,它们都影响聚丙烯的热降解。溴系阻燃剂和磷系阻燃剂是分别从气相阻断、凝固相加速成炭实现阻止燃烧的,而磷-溴型阻燃剂同时具备单纯含磷或者含溴阻燃能力。  相似文献   

7.
This study investigated the decomposition of hydrofluorocarbons (HFCs) having high global warming potentials by using a dielectric-packed-bed nonthermal plasma reactor with barium titanate beads as the packing material. The target HFCs were 1,1,1,2-tetrafluoroethane (HFC-134a) and 1,1-difluoroethene (HFC-132a). The effects of several parameters such as reaction temperature, oxygen content, and initial concentration on the HFC decomposition efficiency were evaluated. There was essentially no temperature dependence of the HFC decomposition efficiency in the range 150-250 degrees C. The optimum oxygen content for HFC decomposition was found to be about 0.5 vol %. Variations in the initial concentration did not affect the decomposition efficiency. The decomposition products were analyzed, and some decomposition pathways were elucidated. The energy requirements for the decomposition of HFC-134a and HFC-132a were found to be 0.038 and 0.062 mol MJ-1, respectively, based on the initial concentrations of 200 and 120 ppm (parts per million, volumetric).  相似文献   

8.
Dinitropyrazole is an important structure for the design and synthesis of energetic materials. In this work, we reported the first comparative thermal studies of two representative dinitropyrazole-based energetic materials, 4-amino-3,5-dinitropyrazole (LLM-116) and its novel trimer derivative (LLM-226). Both the experimental and theoretical results proved the active aromatic N-H moiety would cause incredible variations in the physicochemical characteristics of the obtained energetic materials. Thermal behaviors and kinetic studies of the two related dinitropyrazole-based energetic structures showed that impressive thermal stabilization could be achieved after the trimerization, but also would result in a less concentrated heat-release process. Detailed analysis of condensed-phase systems and the gaseous products during the thermal decomposition processes, and simulation studies based on ReaxFF force field, indicated that the ring opening of LLM-116 was triggered by hydrogen transfer of the active aromatic N-H moiety. In contrast, the initial decomposition of LLM-226 was caused by the rupture of carbon-nitrogen bonds at the diazo moiety.  相似文献   

9.
卢林刚  杨守生  张燕  黄晓东 《化学学报》2009,67(14):1695-1699
以新戊二醇、三氯氧磷及1,3,5-三羟基苯等为原料, 经过两步反应合成新型磷系阻燃剂1,3,5-三(5,5-二甲基-1,3-二氧杂-2-氧代己内磷酰基-2-氧)苯, 采用元素分析、FT-IR、MS及1H NMR等技术确定了标题化合物的分子结构. 以TG-DTG为手段, 研究该新型磷系阻燃剂在氮气气氛中的热分解动力学; 利用Kissinger法、Flynn-Wall-Ozawa (FWO)法对其进行热分解动力学研究, 求出该阻燃剂的热分解动力学参数; 利用Coast-Redfern法研究该阻燃剂的热分解机理. 结果表明, Kissinger法所求得的表观活化能为171.72 kJ•mol-1, 指前因子ln A为37.57; Flynn-Wall-Ozawa法所求得的表观活化能为172.05 kJ•mol-1. 标题化合物的热分解动力学方程g(α)=α1/4, 反应级数n=1/4.  相似文献   

10.
A carbonization agent, 3,9‐di (2‐hydroxyisopropyl)‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro‐[5,5]‐undecane (SPEPO), was synthesized from pentaerythritol (PER), phosphorus trichloride, formic acid, and acetone as raw materials. The structure of SPEPO was characterized by FTIR and 1H‐NMR. As a carbonization agent and an acid source, SPEPO can form a novel intumescent flame‐retardant (IFR) system for low density polyethylene (LDPE) together with ammonium polyphosphate (APP) and melamine phosphate (MP). The flame retardancy and thermal behavior of the IFR system for LDPE were investigated by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). When the weight ratio of SPEPO, APP, and MP is 7:7:1 and their total loading level is 30%, the IFR‐LDPE presents the optimal flame retardancy (LOI value of 27.6 and UL‐94 V‐0 rating). However, SPEPO, APP, or MP can only show a very poor flame‐retardant performance when used alone. This indicates that there is a synergistic effect among SPEPO, APP, and MP. TGA results obtained in air demonstrate that SPEPO has an ability of char formation itself, and the char residue of SPEPO can reach 24 wt% at 700°C. The IFR can change the thermal degradation behavior of LDPE, enhance Tmax of the decomposition peak of LDPE, and promote LDPE to form char based on the calculated and the experimental data of residues. According to the results of Py‐GC/MS in combination with FTIR of the char residues at different temperatures, a possible flame‐retardant mechanism has been proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Due to the insufficient understanding of the selective oxidation mechanism of α/β-isophorones (α/β-IP) to ketoisophorone (KIP), the key features in the β-IP oxidation catalyzed by N-hydroxyphthalimide (NHPI) have been explored via theoretical calculations. β-IP is more favourable to being activated by phthalimide-N-oxyl radical (PINO˙) and peroxyl radical (ROO˙) than α-IP owing to the different C-H strengths at their reactive sites, thereby exhibiting selective product distributions. It was found that NHPI accelerates β-IP activation due to the higher reactivity of PINO˙ than ROO˙ and the equilibrium reaction between them, yielding considerable hydroperoxide (ROOH) and ROO˙. In addition, the ROOH decomposition is more favourable viaα-H abstraction by radicals than its self-dehydration and thermal dissociation. The strong exothermicity of this α-H abstraction, along with that from H-abstraction by co-yielded hot HO˙, is in favor of the straightforward formation of KIP, simultaneously leading to the isomerization of a few β-IP to α-IP and production of 4-hydroxyisophorone (HIP) and water. The proposed mechanisms, consistent with the experimental observations, allow for the deeper understanding and effective design of oxidation systems involving similar substrates or NHPI analogues that are of industrial importance.  相似文献   

12.
Nanoflaky manganese phosphate (NMP) was synthesized from manganese nitrate and trisodium phosphate dodecahydrate, and used as a synergistic agent on the flame retardancy of polypropylene (PP)/intumescent flame retardant (IFR) system. The thermogravimetric analysis (TGA), real time Fourier-transform infrared (RTFTIR) spectroscopy measurements, cone calorimeter (CONE) and microscale combustion calorimeter (MCC) were used to evaluate the synergistic effects of NMP on PP/IFR system. When IFR + NMP was fixed at 20 wt% in flame retardant PP system, the TGA tests showed that NMP could enhance the thermal stability of PP/IFR system at initial temperature from about room temperature to 440 °C and effectively increase the char residue formation. The RTFTIR results revealed that NMP could clearly change the decomposition behavior of PP in PP/IFR system, which promotes decomposition at the initial temperature from about room temperature to 260 °C and forms more effective barrier layer to protect PP from decomposing at high temperature from about 260 °C to 500 °C. The CONE tests indicated that the addition of NMP in PP/IFR system not only reduced the peak heat release rate (HRR), but also prolonged the ignition time. The MCC results revealed that PP/IFR/NMP system generated less combustion heat over the course of heating than that of PP/IFR system. And scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to explore the char residues of the PP/IFR systems with and without NMP.  相似文献   

13.
The burning velocities of fluoromethane (HFC-41), 1,2-difluoroethane (HFC-152), fluoroethane (HFC-161) and ethane were measured by the spherical-vessel (SV) method at room temperature and at initial pressures of 80-107 kPa over a wide range of HFC/air equivalence ratios (?). The burning velocities were determined from the measured pressure increases by application of a spherical flame model. Schlieren photography was used to directly observe flame propagation behavior in a cylindrical vessel equipped with optical windows. The time evolution of the flame radii derived from the pressure increases agreed with the time evolution observed with the Schlieren technique. The maximum burning velocities of HFC-41, HFC-152, HFC-161 and ethane were 28.3 cm s−1 at ? = 1.01, 30.1 cm s−1 at ? = 1.07, 38.3 cm s−1 at ? = 1.07 and 40.9 cm s−1 at ? = 1.05, respectively. The maximum burning velocities for the HFCs, including previously reported C1 and C2 fluoroalkanes, decreased with increasing F-substitution rate (the ratio of the number of F atoms to the sum of the number of H and F atoms). The concentrations of chemical species in the flames were investigated by means of an equilibrium calculation, and the results suggested that the burning velocity was correlated with the concentrations of H and OH radicals that were not deactivated by F radicals in the flame. The results also suggested that the burning velocities were linearly related to the heats of combustion of the C1 and C2 fluoroalkanes.  相似文献   

14.
新型侧基含磷共聚酯的阻燃和热降解动力学   总被引:3,自引:0,他引:3  
利用动态热重分析法(TG)研究了聚酯(PET )及侧基含磷共聚酯(FR-PET)在不同升温速率下的热稳定性及热降解动力学, 并通过极限氧指数法(LOI)考察了FR-PET的阻燃性能; 采用Flynn-Wall-Ozawa方法分析了PET和FR-PET的热降解表观活化能; 利用Coast-Redfern方法通过对不同机理模型的选取, 确定了PET和FR-PET热降解动力学机理及其模型, 得出了主降解阶段的非等温动力学方程及热降解速率曲线图. 研究结果表明, 侧基含磷单元的引入提高了聚酯的阻燃性能, 侧基上的P—C和P—O键易断裂, 从而降低了聚酯的热稳定性. PET和FR-PET的热降解表观活化能(0.1≤α≤0.85)分别为194-227和184-209 kJ/mol; PET和FR-PET热降解反应均属于受减速形α-t曲线控制的反应级数机理, 其机理函数为f(α)=3(1-α)2/3(0.1≤α≤0.85). 侧基含磷单元的引入对PET的主降解阶段的热降解速率并无实质上的影响. 侧基含磷共聚酯的凝聚相阻燃作用有限, 可能以气相阻燃机理为主发挥阻燃作用.  相似文献   

15.
A thermoplastic toughener, polyether sulphone (PES) and a number of different types of flame retardants were blended in different ratios with a commercial epoxy resin triglycidyl-p-aminophenol (TGAP) and 4,4-diamino diphenyl sulphone (DDS) a curing agent. The effect of type and levels of flame retardants (FR) and the toughening agent on the curing, thermal decomposition and char oxidation behaviour of the epoxy resin was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. It was observed that the toughener slightly increases the curing temperature (by up to 20 °C) but had minimal effect on the decomposition temperature of the resin. Flame retardants, however affected all stages depending upon the type of flame retardant used. The curing peak for samples containing tougher and flame retardants although slightly changed depending upon the type of FR, was not more than ± 20 °C compared to that of samples containing toughener only. All flame retardants lowered the decomposition temperature of the epoxy resin. Phosphorus- and nitrogen-containing flame retardants reduced the char oxidation leading to more residual char, whereas halogen- containing flame retardants had less effect on this stage.  相似文献   

16.
Three commercialized flame retardants, 1,2‐bis(diphenylphosphinoyl)ethane (EDPO), 6,6‐(1,2‐phenethyl)bis‐6H‐dibenz[c,e][1,2]oxaphosphorin‐6,6‐dioxide (HTP‐6123), and hexa‐phenoxy‐cyclotriphosphazene (HPCTP), were used to prepare the flame retardant diglycidyl ether of bisphenol A (DGEBA) epoxy resin (EP) under the same experimental conditions. The effects of Tg, thermal stability, and water absorption properties of EP caused by the three flame retardants were investigated and compared, together with their flame retardant efficiency. Results showed that the introduction of the three flame retardants improved the flame retardant performance of EP but led to decreases in Tg and decomposition temperature. EDPO showed higher flame retardant efficiency than the other two flame retardants. EP/EDPO showed higher thermal stability, better flame retardant performance, higher Tg value, and lower water absorption than EP/HTP‐6123 and EP/HPCTP. The study discovered that EDPO and HTP‐6123 primarily act through the gas phase flame retardant mechanism, while HPCTP is primarily driven by the condensed phase mechanism.  相似文献   

17.
A comparison of melamine salt of pentaerythritol phosphate (MPP), and a synergistic agents, iron–graphene (IG) was performed in thermoplastic polyurethane (TPU) by masterbatch‐melt blending on thermal and flame retardant properties. The flame retardant properties of TPU composites were characterized by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT). The CCT results revealed that IG can significantly enhance flame retardant properties of MPP in TPU. The peak heat release rate of neat TPU and flame retardant TPU/MPP composites decreased from 2192.6 and 226.7 to 187.2 kW/m2 compared with that of TPU containing 0.25 wt% IG. The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis (TGA) and thermogravimetric/Fourier infrared spectrum analysis (TG‐IR). The results indicated IG and MPP can improve the thermal stability of TPU. The formation of thermal conductive network by IG can promote the decomposition of MPP into nonflammable melt, which can play the role of heat barrier and restrict the diffusion of fuels into combustion zone and access of oxygen to the unburned fuels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Acetone, hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) are easily to produce triacetone triperoxide (TATP), which is an organic peroxide and a hazardous material. The aim of this study was to analyze the thermal hazard of various fire-extinguishing reagents mixed with TATP. Various functions of fire-extinguishing reagents may have different extent of reactions with TATP. Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TG) were used to detect the thermal hazard and to evaluate the effect of fire-extinguishing reagents mixed with TATP under fire condition. TATP decomposed rapidly and final decomposition was calculated before 200 °C. Therefore, heat of decomposition (ΔH d) of TATP was evaluated to be 2,500 J g?1 by DSC under 2 °C min?1 of heating rate. H2O2, acetone, and H2SO4 should not be mixed in a wastewater drum. TATP decomposed at 50 °C by DSC using O2 of reaction gas that is an exothermic reaction and can decompose a large amount of heat. Therefore, TATP was applied to assess thermal pyrolysis by DSC employing N2 of reaction gas that can analyze an endothermic reaction. Mass loss percentage of TATP was evaluated to be 100 % when the ambient temperature exceeds 110 °C by TG using O2 or N2 of reaction gas.  相似文献   

19.
This research explores the structural effect of phosphoramidates as flame retardants (FRs) for cotton cellulose. Flame retardant (FR) and thermal decomposition actions of phosphate such as triethyl phosphate (TEP), primary phosphoramidate such as diethyl phosphoramidate (DEPA) and secondary phosphoramidates such as phosphoramidic acid, N(2-hydroxy ethyl) diethylester (PAHEDE), diethyl ethyl phosphoramidate (DEEP) and diethyl 2-methoxyethylphosphoramidate (DEMEP) on cotton cellulose were investigated. Limiting oxygen index (LOI) of treated cotton cellulose showed that all phosphoramidates exhibited better flame retardant properties as compared to TEP. Secondary phosphoramidate PAHEDE had better flame retardant properties as compared to DEMEP and DEEP which indicate that flame retardancy of secondary phosphoramidates is structure related. Test performed on pyrolysis combustion flow calorimeter (PCFC) for treated cellulose showed higher reduction in heat of combustion for efficient FRs (PAHEDE, DEPA). Evolved gas analysis using thermogravimetric analyzer-Fourier transform infrared spectroscopy (TGA-FTIR) and thermogravimetric analyzer-mass spectrometer (TGA-MS) of treated cellulose showed that phosphoramidates could catalyze the dehydration and char formation of cellulose at a lower temperature. The enhanced flame retardant action of phosphoramidate may be due to the catalytic thermal decomposition of the phosphoramidate structure to produce acidic intermediates which could react with cellulose to alter its thermal decomposition.  相似文献   

20.
To develop environmental‐friendly and flame‐retarded polymer composites, bio‐based polylactic acid (PLA) was loaded with thermally stable polyhedral octaphenyl silsesquioxane (OPS). Pure PLA and PLA/OPS composites with the OPS of 1, 3, 5, and 10 wt% were prepared by extrusion and injection molding, respectively. The scanning electron microscopy (SEM), polarized optical microscope (POM), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and thermal gravimetric analysis (TGA) were used to analyze the dispersion of the OPS in the PLA matrix and the effects of OPS on the crystallization and thermal stability properties of PLA/OPS composites, respectively. Limited oxygen index (LOI) and cone calorimeter (CONE) measurements were used to study flame retardancy of PLA and PLA/OPS composites. In order to study the flame‐retardant mechanism, the char residues were investigated by SEM, Fourier transform infrared spectra (FTIR), and X‐ray photoelectron spectroscopy (XPS). TGA‐FTIR was used to analyze the gaseous products of their thermal decomposition. The results show that the OPS particles were submicron in the PLA and could increase the crystallization rate of PLA and form small‐sized secondary α‐form crystalline compared with the pure PLA spherulite. The PLA and OPS decomposed individually in the PLA/OPS composites by TGA. According to the LOI tests, the PLA with the OPS loading exhibited very small reduction of LOI. However, the CONE tests indicated that the OPS could improve the flame retardancy of the PLA by means of low peak heat release rate and average heat release rate. It was obtained that the degree and type of the PLA crystalline for the pure PLA and PLA/OPS affect their flame retardancy. In the max thermal decomposition stage of PLA and PLA/OPS, their gaseous products were similar; at high temperatures, the PLA/OPS produced simple and clear gaseous products of PLA with solid SiO2 in the gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号