首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
The thermal stability of linear low density polyethylene (LLDPE)/ethylene methyl acrylate (EMA) blends was studied using thermogravimetry. The blend ratio as well as the presence of compatibilizer has significant effect on thermal stability of the blends. The compatibilization of the blends using LLDPE-g-MA has increased the degradation temperature. Phase morphology was found to be one of the most decisive factors that affected the thermal stability of both uncompatibilized and compatibilized blends. Dynamic mechanical behavior of the blend was studied by dynamic mechanical analysis. The storage modulus of the blends decreased with increase in EMA content. When compatibilized with LLDPE-g-MA the storage modulus of the blend increases. LLDPE-g-MA is an effective compatibilizer as it increases the thermal stability and modulus of the blend.  相似文献   

2.
In situ reactive compatibilization was first time applied to a low melting nylon (nylon 6 and 66 copolymer) and EPDM blend system. The effects of in situ compatibilization and concentration of compatibilizer on the morphology and mechanical properties of nylon/EPDM blends have been investigated. The influence of EPM‐g‐MA on the phase morphology was examined by the scanning electron microscopy (SEM) after preferential extraction of the minor phase. The SEM micrographs were quantitatively analyzed for domain size measurements. The compatibilizer concentrations used were 0, 1, 2.5, 5, and 10 wt%. The graft copolymer (nylon‐g‐EPM) formed at the interface showed relatively high emulsifying activity. A maximum phase size reduction was observed when 2.5 wt% of compatibilizer was added to the blend system. This was followed by a leveling‐off at higher loadings indicating interfacial saturation. The conformation of the compatibilizer at the interface was deduced based on the area occupied by the compatibilizer at the blend interface. The experimental compatibilization results were compared with theoretical predictions of Noolandi and Hong. It was concluded that the molecular state of compatibilizer at interface changes with concentration. The in situ compatibilized blends showed considerable improvement in mechanical properties. Measurement of tensile properties shows increased elongation as well as enhanced modulus and strength up on compatibilization. At higher concentrations of compatibilizer, a leveling‐off of the tensile properties was observed. A good correlation has been observed between the mechanical properties and morphological parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Summary: Processing and compatibilization effects of a commercially available styrene/ ethylene-butylene/ styrene (SEBS) compatibilizer on the morphological structure, rheological and mechanical properties of blends of polystyrene (PS) and high density polyethylene (HDPE) were investigated. The rheological behaviour of the blends melt during processing was followed by measuring torque; extrusion capacity output and melts back-pressure in a twin screw extruder. The processing parameters were decreased with the HDPE content. The results show that SEBS compatibilizer can yield compatibilization by substantially reducing torque and increasing the back-pressure. However, the Hurst indices of melt processing parameters are increased with compatibilization. Near-infrared spectra had been described by the Hurst index HNIR which is then related to HDPE content in the blends. The correlation between the blend compositions, morphological structure, mechanical and rheological properties and processing parameters was established and discussed on base of correlation with the fractal indices obtained from the SEM microphotographs of PS/HDPE/SEBS blends.  相似文献   

4.
The thermal behaviour of styrene butadiene rubber (SBR)/poly (ethylene-co-vinyl acetate) (EVA) blends was studied by using thermogravimetry (TG) and differential scanning calorimetry (DSC). The effects of blend ratio, cross-linking systems and compatibilization on the thermal stability and phase transition of the blends were analyzed. It was found that the mass loss of the blends at any temperature was lower than that of the components, highlighting the advantage of blending SBR and EVA. The addition of compatibilizer was also found to improve the thermal stability. DSC studies indicated the thermodynamic immiscibility of SBR/EVA system even in the presence of the compatibilizer. This is evident from the presence of two different glass transition temperatures, corresponding to SBR and EVA phases in both compatibilized and uncompatibilized blends.  相似文献   

5.
SEP对PP/PS共混物的增容作用   总被引:3,自引:0,他引:3  
游长江 《广州化学》2001,26(3):7-14
研究了苯乙烯 -乙烯 /丙烯二嵌段共聚物 (SEP)对聚丙烯 /聚苯乙烯 (PP/PS)共混物的形态和力学性能的影响。结果表明 ,SEP在PP/PS共混物中作为增容剂 ,降低了分散相的聚结 ,减小了分散相的平均粒子尺寸 ,大大改变了共混物的形态 ,提高了共混物的力学性能 ,对PP/PS( 2 0 /80 )共混物的增容作用较为显著  相似文献   

6.
离子聚合物在Nylon-1010/PP共混物中的增容作用曲桂杰,刘景江(中国科学院长春应用化学研究所长春130022)关键词聚丙烯,Nylon-1010,离子聚合物,增容选择离子聚合物作为高聚物共混的增容剂,通过离子间的相互作用可达到增容效果[1]。...  相似文献   

7.
Polystyrene (PS), being an amorphous polymer is immiscible with other polymers. To engender miscible blends, PS has been functionalized with an active amino‐functional group on the molecular chains of PS to yield amino‐substituted polystyrene (APS), which serves as a reactive compatibilizer. The compatibilization effect of amino functionalized polystyrene on the rubber toughening was explored and results were compared in terms of morphology, thermal, and mechanical properties of PS/SEBS‐g‐MA versus APS/SEBS‐g‐MA blends. In addition, the effect of rubber content on the blend morphology and mechanical properties were investigated. An appreciable change in the thermal stability of APS blends in comparison with PS blend has been probed. A marked correlation has been observed between phase morphology and thermal stability. Use of APS produced the compatibilized blends which render improved blend morphology, enhanced thermal and mechanical properties. Optimal thermal, morphological and mechanical profiles were depicted by 20‐wt% APS blend. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene (PTT/ABS) blends were prepared by melt processing with and without epoxy or styrene-butadiene-maleic anhydride copolymer (SBM) as a reactive compatibilizer. The miscibility and compatibilization of the PTT/ABS blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), capillary rheometer and scanning electron microscopy (SEM). The existence of two separate composition-dependent glass transition temperatures (Tgs) indicates that PTT is partially miscible with ABS over the entire composition range. In the presence of the compatibilizer, both the cold crystallization and glass transition temperatures of the PTT phase shifted to higher temperatures, indicating their compatibilization effects on the blends.The PTT/ABS blends exhibited typical pseudoplastic flow behavior. The rheological behavior of the epoxy compatibilized PTT/ABS blends showed an epoxy content-dependence. In contrast, when the SBM content was increased from 1 wt% to 5 wt%, the shear viscosities of the PTT/ABS blends increased and exhibited much clearer shear thinning behavior at higher shear rates. The SEM micrographs of the epoxy or SBM compatibilized PTT/ABS blends showed a finer morphology and better adhesion between the phases.  相似文献   

9.
The mechanical properties and dynamic mechanical properties of blends composed of Nylon 6 and poly(butylenes terephthalate)(PBT),with styrene/maleic anhydride(SMA)as compatibilizer,were studied.The observation on the morphologies of the etched surfaces of the cryogenically fractured specimens via scanning electron microscopy(SEM)demonstrated that in the compatibilized Nylon 6/PBT blends,there exists a finer and more uniform dispersion induced by the in-situ interfacial chemical reactions during the preparation than that in the corresponding uncompatibilized blends.On the other hand,the overall mechanical properties of the compatibilized blends could be remarkably improved compared with those of the uncompatibilized ones.Moreover,increasing the amount of the compatibilizer SMA leads to a more efficient dispersion of the PBT phase in Nylon 6/PBT blends.Furthermore,there exists an optimum level of SMA added to achieve the maximum mechanical properties.As far as the mechanism of this reactive compatibilization is concerned,the enhanced interfacial adhesion is necessary to obtain improved dispersion,stable phase morphology,and better mechanical properties.  相似文献   

10.
线形低密度聚乙烯/废胶粉热塑弹性体动态硫化性能研究   总被引:1,自引:0,他引:1  
利用动态硫化法制备了线形低密度聚乙烯(LLDPE)/废胶粉(GTR)热塑弹性体。重点研究了两种交联剂:硫和过氧化二异丙苯(DCP)对共混物性能的影响。加入一定量的苯乙烯-丁二烯-苯乙烯(SBS)共聚物作为增容剂。结果表明,经过DCP动态硫化后的共混物的力学性能比简单共混的共混物有明显的提高,而加入硫磺体系对共混物力学性能影响不大甚至有所下降。通过红外光谱、热分析(DSC)和扫描电镜(SEM)对共混物的热行为和表面形态研究表明,加入DCP交联剂使LLDPE、SBS和胶粉之间发生了交联反应,从而增加了胶粉颗粒与LLDPE间的界面相容性,使其热塑性弹性体的力学性能得以提高。  相似文献   

11.
以乙烯-丙烯酸共聚物(EAA)为增容剂, 研究了它在线性低密度聚乙烯(LLDPE)/聚环氧乙烷(PEO)共混物中的增容作用及其增容机理。采用电子显微镜(SEM)、动态力学分析(DMA)、DSC和红外光谱(IR)对共混物形态及其微观结构进行了表征。结果表明, EAA对LLDPE/PEO共混物有一定的增容作用; 其增容机理为: EAA和LLDPE两者的非晶区部分相容, 而EAA分子中的羧基与PEO分子中的醚氧基相互作用形成了分子间氢键。  相似文献   

12.
In this study, it was aimed to investigate octavinyl‐polyhedral oligomeric silsesquioxane (OV‐POSS) incorporation into natural rubber (NR)/butadiene rubber (BR) elastomer blends as a potential compatibilizer. The effects of OV‐POSS loading levels on the thermal, mechanical, morphological, and dynamic‐mechanical properties of elastomer blends were explored. Fourier‐Transform Infrared Spectrometer (FTIR), Temperature Scanning Stress Relaxation (TSSR), and Differential Scanning Calorimetry (DSC) results revealed the conceivable effect of OV‐POSS nanoparticles in the vulcanization through reacting with sulfur and/or elastomers. Scanning Electron Microscope (SEM), X‐Ray Diffraction (XRD), and tensile test measurements supported the improvement of mechanical properties due to homogeneous dispersion at low loading levels. On the other hand, high amount of OV‐POSS incorporation (7 and 10 phr) resulted in a decrease in mechanical properties, owing to the agglomeration of nanoparticles. According to contact angle and Dynamic mechanical analysis (DMA) results, it could be concluded that OV‐POSS nanoparticles were localized at the interface of the elastomers and enabled the compatibilization of immiscible NR/BR blends.  相似文献   

13.
The degree of compatibilization between natural rubber (NR) and acrylonitrile‐butadiene rubber (NBR) was investigated by two different methods. NBR was chemically modified with maleic anhydride in a screw twin mixer with and without reaction initiator, benzoyl peroxide. Also, the effects of molecular weight of liquid natural rubber (LNR) as a compatibilizer were studied. The degree of compatibilization between NBR and NR is determined indirectly through measurements of mechanical properties and impact resistance. The maleic anhydride and benzoyl peroxide concentrations influence the mechanical properties and impact resistance of the blends. Also, the mechanical properties of the blends showed that the molecular weight of LNR played an important role in determing their performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The compatibilization of incompatible polypropylene (PP)/poly(ethylene oxide) (PEO) blends was studied. The experimental results showed that the graft copolymer [(PP-MA)-g-PEO] of maleated PP(PP-MA) and mono-hydroxyl PEO (PEO-OH) was a good compatibilizer for the PP/PEO blends in which PP-MA also had some compatibilization. The crystallization of the blends was affected by the compatibility between PP and PEO. The interfacial behavior of the compatibilizers had an important effect on crystallization behavior of the PP/PEO blends. PEO showed fractionated crystallization in the PP/PEO blends. This behavior was studied from the view point of the theory of fractionated crystallization. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
In situ compatibilization of low density polyehylene (LDPE) (30%) and nylon-6(70%)blends through one-step reactive extrusion using t-BuOOH as an initiator and low molec-ular weight interfacial agents as compatibilizers was studied. The compatibilizer containeda long chain bydrocarbon, double bond and two polar functional groups which was capableof reacting with both LDPE and nylon-6 in the presence of initiator to form a copolymerat the interface of the two polymer phases. The extruded blends exhibited significant en-hancement in their compatibility based on morphological, thermal analysis and mechanicalstudies. The effect of the hydrocarbon chain length and structure of the functional groupof the compatibilizer was also examined. It was found that blends prepared by using thecompatibilizer containing longer hydrocarbon chain and amide group had better mechanicalproperties.  相似文献   

16.
PP/PP-g-MAH/PA6共混物结构与可纺性研究   总被引:3,自引:0,他引:3  
运用DSC、SEM、纺丝成形等手段研究了增容剂聚丙烯接枝马来酸酐 (PP g MAH)对聚丙烯 聚酰胺 6(PP PA6 )共混物结构和性能的影响 .结果表明 ,共混物呈典型海岛型两相结构 ;增容剂PP g MAH与PA6之间的在位反应改善了PP PA6共混体系的相容性 ,使共混物中PA6的热结晶峰消失 ,PP的结晶生长速率和成核速率降低 ,可纺性提高  相似文献   

17.
Polypropylene (PP) and polyamide‐6 (Ny‐6) blends with a 70/30 composition have been studied by broadband dielectric spectroscopy. The unmodified blends are immiscible, and 10% of PP functionalized with maleic anhydride was added as a compatibilizer. The influence of the compatibilizer on the water sorption and on the molecular dynamics of the Ny‐6 phase is followed by the changes induced in the dielectric loss spectra of these blends in both wet and dry states. The shortest range motions are unaffected by the compatibilizer in the dry state, but a higher water sorption is observed in the unmodified blend. Higher activation energies are found for the β relaxation in the dry blends than for the Ny‐6 homopolymer, showing the existence of constraints on these longer scale motions. During increasing temperature experiments, two segmental modes are recorded, the lower temperature mode corresponding to the plasticized material; as the temperature is raised, a second cooperative mode is found, originating in the dry Ny‐6 amorphous phase, rigidized by the loss of moisture. The comparison of the dielectric strengths of the modes shows that the unmodified blend absorbs more water than the compatibilized blend. The segmental dynamics are unaffected by compatibilization. At high temperatures, the high temperature tail of the segmental mode is much higher in the absence of the compatibilizer. The contribution of a peak due to interfacial polarization is lowered by the presence of the compatibilizer, which makes the interface more diffuse and the trapping of free carriers less effective. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1408–1420, 2005  相似文献   

18.
The effects of styrene-ethylene/propylene (SEP) diblock copolymer on the morphology and mechanical propertiesof polypropylene/polystyrene (PP/PS) blends were investigated. The results showed that SEP diblock copolymer, acting as acompatibilizer in PP/PS immiscible blends, can diminish the coalescence of the dispersed particles, reduce their averageparticle size, change their phase morphologies significantly, and increase the mechanical properties. It was found that SEP has better compatibilization effects on the PP/PS (20/80) blends.  相似文献   

19.
Nylon copolymer (PA6, 66) and ethylene propylene diene (EPDM) blends with and without compatibilizer were prepared by melt mixing using Brabender Plasticorder. The thermal stability of nylon copolymer (PA6, 66)/ethylene propylene diene rubber (EPDM) blends was studied using thermogravimetric analysis (TGA). The morphology of the blends was investigated using scanning electron microscopy (SEM). In this work, the effects of blend ratio and compatibilisation on thermal stability and crystallinity were investigated. The incorporation of EPDM rubber was found to improve the thermal stability of nylon copolymer. The kinetic parameters of the degradation process were also studied. A good correlation was observed between the thermal properties and phase morphology of the blends. By applying Coats and Redfern method, the activation energies of various blends were derived from the Thermogravimetric curves. The compatibilization of the blends using EPM-g-MA has increased the degradation temperature and decreased the weight loss. EPM-g-MA is an effective compatibilizer as it increases the decomposition temperature and thermal stability of the blends. Crystallinity of various systems has been studied using wide angle X-ray scattering (WAXS). The addition of EPDM decreases the crystallinity of the blend systems.  相似文献   

20.
PA6/HIPS/PP-g-(GMA-co-St)反应共混体系的研究   总被引:7,自引:0,他引:7  
通过扫描电镜、热分析、熔体流动速率、熔融扭矩和力学性能等测试方法研究了甲基丙烯酸缩水甘油酯(GMA)和苯乙烯(St)多单体熔融接枝聚丙烯[PP-g-(GMA-co-St)]对PA6/HIPS共混物的熔融流变性能、结晶行为、相形态和力学性能的影响.结果表明,在熔融共混过程中,PP-g-(GMA-co-St)中的环氧基与PA6的端氨基原位生成的接枝共聚物有效地降低了共混物的界面张力,提高了共混物的界面粘着力,使共聚物的流动速率降低,熔融扭矩提高;PA6分子链的规整性降低,结晶完善性变差.在PP-g-(GMA-co-St)的质量分数为10%时,共混物分散相的尺寸明显减少,力学性能得到较大提高;其中冲击强度超过纯PA6,达到HIPS水平.通过反应共混,制备了力学性能均衡的PA6/HIPS/PP-g-(GMA-co-St)共混物合金.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号