首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this paper, the chaos persistence in a class of discontinuous dynamical systems of fractional-order is analyzed. To that end, the initial value problem is first transformed, by using the Filippov regularization (Filippov in Differential Equations with Discontinuous Right-Hand Sides, 1988), into a set-valued problem of fractional-order, then by Cellina’s approximate selection theorem (Aubin and Cellina in Differential Inclusions Set-valued Maps and Viability Theory, 1984; Aubin and Frankowska in Set-valued Analysis, 1990). The problem is approximated into a single-valued fractional-order problem, which is numerically solved by using a numerical scheme proposed by Diethelm et al. (Nonlinear Dyn. 29:3–22, 2002). Two typical examples of systems belonging to this class are analyzed and simulated.  相似文献   

2.
The purpose of this work is the comparison of some aspects of the formulation of material models in the context of continuum thermodynamics (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997) with their formulation in the form of a General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Öttinger in Phys. Rev. E 56: 6620–6632, 1997; Öttinger and Grmela in Phys. Rev. E 56: 6633–6655, 1997; Öttinger in Beyond equilibrium thermodynamics, Wiley, New York, 2005; Grmela in J. Non-Newton. Fluid Mech. 165: 980–998, 2010). A GENERIC represents a generalization of the Ginzburg-Landau model for the approach of non-equilibrium systems to thermodynamic equilibrium. Originally developed to formulate non-equilibrium thermodynamic models for complex fluids, it has recently been applied to anisotropic inelastic solids in a Eulerian setting (Hütter and Tervoort in J. Non-Newton. Fluid Mech. 152: 45–52, 2008; 53–65, 2008; Adv. Appl. Mech. 42: 254–317, 2009) as well as to damage mechanics (Hütter and Tervoort in Acta Mech. 201: 297–312, 2008). In the current work, attention is focused for simplicity on the case of thermoelastic solids with heat conduction and viscosity in a Lagrangian setting (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997, Chaps. 9–12). In the process, the relation of the two formulations to each other is investigated in detail. A particular point in this regard is the concept of dissipation and its model representation in both contexts.  相似文献   

3.
Within the context of heteroepitaxial growth of a film onto a substrate, terraces and steps self-organize according to misfit elasticity forces. Discrete models of this behavior were developed by Duport et al. (J Phys I 5:1317–1350, 1995) and Tersoff et al. (Phys Rev Lett 75:2730–2733, 1995). A continuum limit of these was in turn derived by Xiang (SIAM J Appl Math 63:241–258, 2002) (see also the work of Xiang and Weinan Phys Rev B 69:035409-1–035409-16, 2004; Xu and Xiang SIAM J Appl Math 69:1393–1414, 2009). In this paper we formulate a notion of weak solution to Xiang’s continuum model in terms of a variational inequality that is satisfied by strong solutions. Then we prove the existence of a weak solution.  相似文献   

4.
Controlling system dynamics with use of the Largest Lyapunov Exponent (LLE) is employed in many different areas of the scientific research. Thus, there is still need to elaborate fast and simple methods of LLE calculation. This article is the second part of the one presented in Dabrowski (Nonlinear Dyn 67:283–291, 2012). It develops method LLEDP of the LLE estimation and shows that from the time series of two identical systems, one can simply extract value of the stability parameter which value can be treated as largest LLE. Unlike the method presented in part, one developed method (LLEDPT) can be applied to the dynamical systems of any type, continuous, with discontinuities, with time delay and others. The theoretical improvement shows simplicity of the method and its obvious physical background. The proofs for the method effectiveness are based on results of the simulations of the experiments for Duffing and Van der Pole oscillators. These results were compared with ones obtained with use of the Stefanski method (Stefanski in Chaos Soliton Fract 11(15):2443–2451, 2000; Chaos Soliton Fract 15:233–244, 2003; Chaos Soliton Fract 23:1651–1659, 2005; J Theor Appl Mech 46(3):665–678, 2008) and LLEDP method. LLEDPT can be used also as the criterion of stability of the control system, where desired behavior of controlled system is explicitly known (Balcerzak et al. in Mech Mech Eng 17(4):325–339, 2013). The next step of development of the method can be considered in direction that allows estimation of LLE from the real time series, systems with discontinuities, with time delay and others.  相似文献   

5.
6.
We study the existence of traveling wave solutions for a diffusive predator?Cprey system. The system considered in this paper is governed by a Sigmoidal response function which in some applications is more realistic than the Holling type I, II responses, and more general than a simplified form of the Holling type III response considered before. Our method is an improvement to the original method introduced in the work of Dunbar (J Math Biol 17:11?C32, 1983; SIAM J Appl Math 46:1057?C1078, 1986). A bounded Wazewski set is used in this work while unbounded Wazewski sets were used in Dunbar (1983, 1986). The existence of traveling wave solutions connecting two equilibria is established by using the original Wazewski??s theorem which is much simpler than the extended version in Dunbar??s work.  相似文献   

7.
We present a range of numerical tests comparing the dynamical cores of the operationally used numerical weather prediction (NWP) model COSMO and the university code Dune, focusing on their efficiency and accuracy for solving benchmark test cases for NWP. The dynamical core of COSMO is based on a finite difference method whereas the Dune core is based on a Discontinuous Galerkin method. Both dynamical cores are briefly introduced stating possible advantages and pitfalls of the different approaches. Their efficiency and effectiveness is investigated, based on three numerical test cases, which require solving the compressible viscous and non-viscous Euler equations. The test cases include the density current (Straka et al. in Int J Numer Methods Fluids 17:1–22, 1993), the inertia gravity (Skamarock and Klemp in Mon Weather Rev 122:2623–2630, 1994), and the linear hydrostatic mountain waves of (Bonaventura in J Comput Phys 158:186–213, 2000).  相似文献   

8.
We derive the quantitative modulus of continuity $$\omega(r)=\left[ p+\ln \left( \frac{r_0}{r}\right)\right]^{-\alpha (n, p)},$$ which we conjecture to be optimal for solutions of the p-degenerate two-phase Stefan problem. Even in the classical case p = 2, this represents a twofold improvement with respect to the early 1980’s state-of-the-art results by Caffarelli– Evans (Arch Rational Mech Anal 81(3):199–220, 1983) and DiBenedetto (Ann Mat Pura Appl 103(4):131–176, 1982), in the sense that we discard one logarithm iteration and obtain an explicit value for the exponent α(n, p).  相似文献   

9.
Vorticity distributions over the diffracted shock both from Lighthill’s theory (Proc R Soc A 198:454–470, 1949) applicable for small bends and Sakurai and Takayama’s theory (Shock Waves 4:225–230, 2005) applicable for larger bends have been investigated for Mach numbers 1.80 and 1.95. Furthermore, Mach reflection effects for both theories for the same Mach numbers 1.80 and 1.95 have been investigated.  相似文献   

10.
We consider the Navier–Stokes equations for the motion of compressible, viscous flows in a half-space ${\mathbb{R}^n_+,}$ n =  2,  3, with the no-slip boundary conditions. We prove the existence of a global weak solution when the initial data are close to a static equilibrium. The density of the weak solution is uniformly bounded and does not contain a vacuum, the velocity is Hölder continuous in (x, t) and the material acceleration is weakly differentiable. The weak solutions of this type were introduced by D. Hoff in Arch Ration Mech Anal 114(1):15–46, (1991), Commun Pure and Appl Math 55(11):1365–1407, (2002) for the initial-boundary value problem in ${\Omega = \mathbb{R}^n}$ and for the problem in ${\Omega = \mathbb{R}^n_+}$ with the Navier boundary conditions.  相似文献   

11.
The bifurcation mechanism of bursting oscillations in a three-dimensional autonomous slow-fast Kingni et al. system (Nonlinear Dyn. 73, 1111–1123, 2013) and its fractional-order form are investigated in this paper. The stability analysis of the system is carried out assuming that the slow subsystem evolves on quasi-static state. It is reveaved that the bursting oscillations found in the system result from the system switching between the unstable and the stable states of the only equilibrium point of the fast subsystem. We refer this class of bursting to “source/bursting.” The coexistence of symmetrical bursting limit cycles and chaotic bursting attractors is observed. In addition, the fractional-order chaotic slow-fast system is studied. The lowest order of the commensurate form of this system to exhibit chaotic behavior is found to be 2.199. By tuning the commensurate fractional-order, the chaotic slow-fast system displays Chen- and Lorenz-like chaotic attractors, respectively. The stability analysis of the controlled fractional-order-form of the system to its equilibria is undertaken using Routh–Hurwitz conditions for fractional-order systems. Moreover, the synchronization of chaotic bursting oscillations in two identical fractional-order systems is numerically studied using the unidirectional linear error feedback coupling scheme. It is shown that the system can achieve synchronization for appropriate coupling strength. Furthermore, the effect of fractional derivatives orders on chaos control and synchronization is analyzed.  相似文献   

12.
We establish the existence of global weak solutions of the two-dimensional incompressible Euler equations for a large class of non-smooth open sets. Loosely, these open sets are the complements (in a simply connected domain) of a finite number of obstacles with positive Sobolev capacity. Existence of weak solutions with L p vorticity is deduced from a property of domain continuity for the Euler equations that relates to the so-called γ-convergence of open sets. Our results complete those obtained for convex domains in Taylor (Progress in Nonlinear Differential Equations and their Applications, Vol. 42, 2000), or for domains with asymptotically small holes (Iftimie et al. in Commun Partial Differ Equ 28(1–2), 349–379, 2003; Lopes Filho in SIAM J Math Anal 39(2), 422–436, 2007).  相似文献   

13.
This paper investigates the robust synchronization problem of chaotic Lur’e systems with external disturbance using sampled-data \(H_{\infty }\) controller. The new method is based on a novel construction of piecewise differentiable Lyapunov–Krasovskii functional (LKF) in the framework of an input delay approach. Compared with existing works, the new LKF makes full use of the information on the nonlinear part of the system and introduces the novel terms, which guarantees the positive of the whole LKF. The output feedback \(H_{\infty }\) synchronization controller is presented to not only guarantee stable synchronization, but also reduce the effect of external disturbance to an \(H_{\infty }\) norm constraint. The proposed controller can be obtained by solving the linear matrix inequality problem. The effectiveness of the proposed method is demonstrated by the numerical simulations of Chua’s circuit.  相似文献   

14.
A practical synchronization approach is proposed for a class of fractional-order chaotic systems to realize perfect \(\delta \)-synchronization, and the nonlinear functions in the fractional-order chaotic systems are all polynomials. The \(\delta \)-synchronization scheme in this paper means that the origin in synchronization error system is stable. The reliability of \(\delta \)-synchronization has been confirmed on a class of fractional-order chaotic systems with detailed theoretical proof and discussion. Furthermore, the \(\delta \)-synchronization scheme for the fractional-order Lorenz chaotic system and the fractional-order Chua circuit is presented to demonstrate the effectiveness of the proposed method.  相似文献   

15.
An essential part in modeling out-of-equilibrium dynamics is the formulation of irreversible dynamics. In the latter, the major task consists in specifying the relations between thermodynamic forces and fluxes. In the literature, mainly two distinct approaches are used for the specification of force–flux relations. On the one hand, quasi-linear relations are employed, which are based on the physics of transport processes and fluctuation–dissipation theorems (de Groot and Mazur in Non-equilibrium thermodynamics, North Holland, Amsterdam, 1962, Lifshitz and Pitaevskii in Physical kinetics. Volume 10, Landau and Lifshitz series on theoretical physics, Pergamon Press, Oxford, 1981). On the other hand, force–flux relations are also often represented in potential form with the help of a dissipation potential (?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997). We address the question of how these two approaches are related. The main result of this presentation states that the class of models formulated by quasi-linear relations is larger than what can be described in a potential-based formulation. While the relation between the two methods is shown in general terms, it is demonstrated also with the help of three examples. The finding that quasi-linear force–flux relations are more general than dissipation-based ones also has ramifications for the general equation for non-equilibrium reversible–irreversible coupling (GENERIC: e.g., Grmela and Öttinger in Phys Rev E 56:6620–6632, 6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005). This framework has been formulated and used in two different forms, namely a quasi-linear (Öttinger and Grmela in Phys Rev E 56:6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005) and a dissipation potential–based (Grmela in Adv Chem Eng 39:75–129, 2010, Grmela in J Non-Newton Fluid Mech 165:980–986, 2010, Mielke in Continuum Mech Therm 23:233–256, 2011) form, respectively, relating the irreversible evolution to the entropy gradient. It is found that also in the case of GENERIC, the quasi-linear representation encompasses a wider class of phenomena as compared to the dissipation-based formulation. Furthermore, it is found that a potential exists for the irreversible part of the GENERIC if and only if one does for the underlying force–flux relations.  相似文献   

16.
Motivated by Beale (Commun Pure Appl Math 34:359–392, 1981; Arch Ration Mech Anal 84:307–352, 1983/1984), we investigate the global well-posedness of a free boundary problem of a three-dimensional incompressible viscoelastic fluid system in an infinite strip and with surface tension on the upper free boundary, provided that the initial data is sufficiently close to the equilibrium state.  相似文献   

17.
18.
We consider systems of differential equations which model complex regulatory networks by a graph structure of dependencies. We show that the concepts of informative nodes (Mochizuki and Saito, J Theor Biol 266:323–335, 2010) and determining nodes (Foias and Temam, Math Comput 43:117–133, 1984) coincide with the notion of feedback vertex sets from graph theory. As a result we can determine the long-time dynamics of the entire network from observations on only a feedback vertex set. We also indicate how open loop control at a feedback vertex set, only, forces the remaining network to stably follow prescribed stable or unstable trajectories. We present three examples of biological networks which motivated this work: a specific gene regulatory network of ascidian cell differentiation (Imai et al., Science 312:1183–1187, 2006), a signal transduction network involving the epidermal growth factor in mammalian cells (Oda et al., Mol Syst Biol 1:1–17, 2005), and a mammalian gene regulatory network of circadian rhythms (Mirsky et al., Proc Natl Acad Sci USA 106:11107–11112, 2009). In each example the required observation set is much smaller than the entire network. For further details on biological aspects see the companion paper (Mochizuki et al., J Theor Biol, 2013, in press). The mathematical scope of our approach is not limited to biology. Therefore we also include many further examples to illustrate and discuss the broader mathematical aspects.  相似文献   

19.
Very recently, Shivamoggi and van Heijst (Phys Lett A 374:1742, 2010) reformulated the Da Rios-Betchov equations in the extrinsic vortex filament coordinate space and were able to find an exact solution to an approximate equation governing a localized stationary solution. The approximation in the governing equation was due to the author’s consideration of a first-order approximation of ${\frac{{\rm d}x}{{\rm d}s} = 1/ \sqrt{1+y_x^2 +z_x^2}}$ ; previously, an order-zero approximation was considered by Dmitriyev (Am J Phys 73:563, 2005). Such approximations result in exact solutions, but these solutions may break down outside of specific parameter regimes. Presently, we avoid making the simplifying assumption on ${\frac{{\rm d}x}{{\rm d}s}}$ , which results in a much more difficult governing equation to solve. However, we are able to obtain perturbation solutions, by way of the δ—expansion method, which cast light on this more general problem. We find that such solutions more readily agree with the numerical solutions, while our solutions also match those exact solutions present in the literature for certain values of the parameters (corresponding to ${y_x^2 +z_x^2 < <1 }$ ).  相似文献   

20.
In this notes we consider the stationary Stokes system in a bounded, connected, three-dimensional smooth domain, with homogeneous Dirichlet boundary condition. Proofs also apply to the n-dimensional case, and to other boundary conditions, like Navier-slip ones. We say here that a solution is classical if all derivatives appearing in the equations are continuous up to the boundary. It is well known, for long time, that solutions of the Stokes system are classical if the external forces belong to the H?lder space \({C^{0,\; \lambda}(\bar{\Omega})}\) . It is also well known that, in general, solutions are not classical in the presence of continuous external forces. Hence, a very challenging problem is to find Banach spaces, strictly containing the H?lder spaces \({C^{0,\; \lambda}(\bar{\Omega})}\) such that solutions to the Stokes problem corresponding to forces in the above space are classical. We prove this result for external forces in a suitable functional space, denoted \({{\rm C}_*(\bar{\Omega})}\) , introduced in references Beirão da Veiga (On the solutions in the large of the two-dimensional flow of a non-viscous incompressible fluid, 1982) and Beirão da Veiga (J Differ Equ 54(3):373–389, 1984) in connection with the Euler equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号