首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative addition of 2‐phenylethylbromide (PhCH2CH2Br) to dimethylplatinum(II) complexes [PtMe2(NN)] ( 1a , NN = 2,2′‐bipyridine (bpy); 1b , NN = 1,10‐phenanthroline (phen)) afforded the new organoplatinum(IV) complexes [PtMe2(Br)(PhCH2CH2)(bpy)], as a mixture of trans ( 2a ) and cis ( 3a ) isomers, and [PtMe2(Br)(PhCH2CH2)(phen)], as a mixture of trans ( 2b ) and cis ( 3b ) isomers, respectively. The new Pt(IV) complexes were readily characterized using multinuclear (1H and 13C) NMR spectroscopy and elemental microanalysis. The crystal structure of 2a was further determined using X‐ray crystallography indicating an octahedral geometry around the platinum centre. A comparison of reactivity of RCH2Br reagents (R = CH3, Ph or PhCH2) in their oxidative addition reactions with complex 1a , with an emphasis on the effects of the R groups of alkyl halides, was also conducted using density functional theory.  相似文献   

2.
Several 6-methyl-9-carbamoyltetrahydro-4H-pyrido[1,2-α]pyrimidin-4-ones have been prepared using phosgene iminium chloride. These compounds can exist in equilibrium as the cis (3A) imine ? (3B) enamine ? trans (3C) imine. 1H, 13C and 15N NMR prove that the cis- and trans-imine isomers are predominant in the equilibrium. 1H NMR data reveal that the share of the 3B enamine form is negligible at measurable concentrations. The isomeric ratio 3A:3C is time dependent and can be monitored by measuring the CH3? C-6 and (CH3)2N signals. The 13C NMR data show that doublets in the range 42–45 ppm for C-9 are only compatible with the imine forms 3A and 3C. The SCS values of the CH3? C-6 and OCN(CH3)2 groups were calculated and used for identification of the cis and trans isomers. 15N NMR data show that the N-1 chemical shift of the imine is approximately ? 140 ppm for compound 3, whereas that of a fixed enamine is around ? 267.8. This provides additional support for the predominance of the imine tautomers in the equilibrium 3A ? 3B ? 3C. 15N data allow the stereoisomers 3A and 3C to be distinguished.  相似文献   

3.
The reaction of [TcNCl2(PPh3)2] with 2,2′:6′,2″-terpyridine producedcis-[TcNCl2(terpy)] selectively. The resulting complexes were characterized by1H NMR and IR spectroscopy. The geometries of thecis andtrans isomers were estimated by theoretical calculations following a density functional method. Thecis isomer is likely more stable than thetrans one with respect to thetrans influence of the nitrido ligand. Furthermore, the behavior of nitridotechnetium complexes in polar solvents was compared to Os-analogues.  相似文献   

4.
Pure cis and trans isomers of CpMo(CO)2(L)X (Cp = η5-C5H5, L = PPh3 or PBu3, X = Br, or I) have been separated by chromatography and characterized by infrared and proton NMR spectroscopy. The reactions of trans-CpMo(CO)2(L)CH3 with HgX2 (X = Cl, Br, I, SCN) afford cis-CpMo(CO)2(L)X in high yield. Both linkage isomers are obtained in the reaction with Hg(SCN)2, L = PPh3. The mercuric halides react with CpMo(CO)2(L)COCH3 to form the metalmetal bonded derivatives trans-CpMo(CO)2(L)HgX. Reactions of CpMo(CO)2(L)CH3 or CpMo(CO)2(L)COCH3 with bromine or iodine yield the halide complexes CpMo(CO)2(L)X (X = Br and I, respectively), the product mixtures containing high proportions of the trans isomers.  相似文献   

5.
Two isomers of heteroleptic bis(bidentate) ruthenium(II) complexes with dimethyl sulfoxide (dmso) and chloride ligands, trans(Cl,Nbpy)- and trans(Cl,NHdpa)-[Ru(bpy)Cl(dmso-S)(Hdpa)]+ (bpy: 2,2′-bipyridine; Hdpa: di-2-pyridylamine), are synthesized. This is the first report on the selective synthesis of a pair of isomers of cis-[Ru(L)(L′)XY]n+ (L≠L′: bidentate ligands; X≠Y: monodentate ligands). The structures of the ruthenium(II) complexes are clarified by means of X-ray crystallography, and the signals in the 1H NMR spectra are assigned based on 1H–1H COSY spectra. The colors of the two isomers are clearly different in both the solid state and solution: the trans(Cl,Nbpy) isomer has a deep red color, whereas the trans(Cl,NHdpa) isomer is yellow. Although both complexes have intense absorption bands at λ≈440–450 nm, only the trans(Cl,Nbpy) isomer has a shoulder band at λ≈550 nm. DFT calculations indicate that the LUMOs of both isomers are the π* orbitals in the bpy ligand, and that the LUMO level of the trans(Cl,Nbpy) isomer is lower than that of the trans(Cl,NHdpa) isomer due to the trans effect of the Cl ligand; thus resulting in the appearance of the shoulder band. The HOMO levels are almost the same in both isomers. The energy levels are experimentally supported by cyclic voltammograms, in which these isomers have different reduction potentials and similar oxidation potentials.  相似文献   

6.
The 1H NMR parameters of methyl 3-substituted cis-4-halotetrahydro-2-oxo-3-furancarboxylates are reported, with assignments of the ring protons based on solvent-induced changes in the vicinal trans coupling constants, 3J(H-4, H-5). Preferred conformations, ce with a pseudo-equatorial halogen for the cis isomers and ta with a pseudo-axial halogen for the trans isomers, have been suggested on comparison of the magnitudes of J(trans) and J(gem) in both series. The 3J(13CH3, H-4) values measured for methyl cis-4-bromotetrahydro-3-methyl-3-furancarboxylate, methyl trans-4-bromotetrahydro-3-methyl-3-furancarboxylate and trans-3,4-dibromodihydro-3-methyl-2(3H)-furanone have confirmed the stereochemical assignments.  相似文献   

7.
The reaction of complex [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)6 (1) with trans-1,2-bis(diphenylphosphino)ethylene (trans-dppv) in the presence of Me3NO?2H2O in CH2Cl2/CH3CN afforded complex {[μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5}2(trans-dppv) (2) with a bridging dppv. Complex [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)4(cis-dppv) (3) was prepared by the reaction of 1 with cis-dppv and Me3NO?2H2O. The new complexes 2 and 3 were characterized by elemental analysis, spectroscopy, and X-ray diffraction analysis.  相似文献   

8.
Novel acyclic Pd(II)‐N‐heterocyclic carbene (NHC) metallacrown ethers 5a , 5b have been synthesized. Reaction of the imidazolium salts bearing a long polyether chain with Ag2O afforded Ag‐NHC complexes, which then reacted as carbene transfer agent with PdCl2(MeCN)2 to give the desired acyclic Pd(II)‐NHC metallacrown ether complexes 5a and 5b . The 1H NMR and 13C NMR spectra show 5a and 5b exist as mixtures of cis and trans isomers in solution. The trans isomer of 5a was characterized by X‐ray diffraction, which clearly demonstrated two pseudo‐crown ether cavities in trans‐ 5a . Pd(II)‐NHC complexes 5a and 5b have been shown to be highly effective in the Suzuki‐Miyaura reactions of a variety of aryl bromides in neat water without the need of inert gas protection.  相似文献   

9.
Synthesis and characterization of seven ruthenium(II) and ruthenium(III) complexes of sulfoxide with 2-aminobenzothiazole are reported. Three different formulations exist: [cis,cis,cis-RuCl2(SO)2(2-abtz)2] and [trans,trans,trans-RuCl2(SO)2(2-abtz)2] and [trans-RuCl4(SO)(2-abtz)] ? [X]+ (where SO?=?dimethyl sulfoxide (dmso) or tetramethylenesulfoxide (tmso); 2-abtz?=?2-aminobenzothiazole and [X]+?=?[H(abtz)]+, [Na+]. These complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility, FTIR, 1H NMR, 13C{1H} NMR and electronic spectroscopy. Some of the complexes were screened for their antibacterial activity and are found to be potent against the gram negative bacteria Escherichia coli.  相似文献   

10.
The series of cis/trans-trifluoromethylselenato complexes [Pt(SeCF3)2 − xClx(PPh3)2] (x = 0, 1) was identified by NMR spectroscopic methods. While in acetonitrile solution spectra are dominated by the resonances of the cis derivatives, those of pure cis-[Pt(SeCF3)2(PPh3)2] indicate cis-trans-isomerisation in CH2Cl2 solution. In contrast, exchange reactions of cis-[PtCl2(PPh3)2] and [NMe4]TeCF3 only gave evidence for cis isomers. Molecular structures of cis- and trans-[Pt(SeCF3)2(PPh3)2] and cis-[Pt(TeCF3)2(PPh3)2] are discussed in comparison with related compounds.  相似文献   

11.
Irradiation cis-[M(Ln-S,O)2] complexes (M = PtII, PdII) derived from N,N-dialkyl-N′-benzoylthioureas (HLn) with various sources of intense visible polychromatic or monochromatic light with λ < 500 nm leads to light-induced cis?→?trans isomerization in organic solvents. In all cases, white light derived from several sources or monochromatic blue-violet laser 405 nm light, efficiently results in substantial amounts of the trans isomer appearing in solution, as shown by 1H NMR and/or reversed-phase HPLC separation in dilute solutions at room temperature. The extent and relative rates of cis/trans isomerization induced by in situ laser light (λ = 405 nm) of cis-[Pd(L2-S,O)2] was directly monitored by 1H NMR and 195Pt NMR spectroscopy of selected cis-[Pt(L-S,O)2] compounds in chloroform-d; both with and without light irradiation allows the δ(195Pt) chemical shifts cis/trans isomer pairs to be recorded. The cis/trans isomers appear to be in a photo-thermal equilibrium between the thermodynamically favored cis isomer and its trans counterpart. In the dark, the trans isomer reverts back to the cis complex in what is probably a thermal process. The light-induced cis/trans process is the key to preparing and isolating the rare trans complexes which cannot be prepared by conventional synthesis as confirmed by the first example of trans-[Pd(L-S,O)2] characterized by single-crystal X-ray diffraction, deliberately prepared after photo-induced isomerization in acetonitrile solution.  相似文献   

12.
The oxomolybdenum(VI) complex [MoOCl(L)] with a tetradentate glycine bisphenol ligand (H3L) was prepared by reaction of [MoO2Cl2(DMSO)2] with a ligand precursor in hot toluene. The product was isolated in moderate yield as separable cis and trans isomers along with the third minor component, [MoO2(HL)]. The solid-state structure of trans-[MoOCl(L)] was determined by X-ray diffraction. The ligand has tetradentate coordination through three oxygens and one nitrogen, which is located trans to the terminal oxo whereas the sixth coordination site is occupied by a chloride. Both cis and trans isomers of [MoOCl(L)] are active catalysts for epoxidation of cis-cyclooctene and sulfoxidation of tolyl methyl sulfide. The cis isomer gave higher activity in epoxidation and sulfoxidation reactions at room temperature than the trans isomer but they performed identically at 50?°C.  相似文献   

13.
Cyclometallated complexes of the type cis-bis(2-phenylpyridine)platinum(II) (C22H16N2Pt) and cis-bis(2-(2′-thienyl)pyridine)platinum(II) (C18H12N2S2Pt) undergo thermal or photochemical oxidative addition (TOA or POA) reactions with a number of substrates. TOA (with CH3I, CH3CH2I etc.) yield mixtures of several isomers which rearrange slowly (within ca. one week at room temperature) to one of the possible cis-isomers. CH2Cl2, CHCl3, or (E)? ClCH?CHCl, e.g., do not react thermally. POA yield directly complexes of Pt(IV) with the halide and a σ-bonded C-atom in cis-position. The configuration, as assigned by extensive use of 1H-NMR data, can be characterized for the two chelating ligands C …? N and C′ …? N′ by C,C′-cis; N,N′-cis and C(chelate), Cl-trans.  相似文献   

14.
Isomerically pure nitrile complexes cis‐[Ru(dppm)2Cl(NCR)]+ ( 2 a – d ) are formed upon chloride displacement from cis‐[Ru(dppm)2Cl2] ( 1 ) or, alternatively, by ligand substitution from the acetonitrile complex 2 a . This latter approach does also allow for the introduction of pyridine ( 3 a , b ), heptamethyldisilazane ( 4 ) or isonitrile ligands ( 5 ). All complexes are obtained as the configurationally stable cis‐isomers. Only cis‐[Ru(dppm)2Cl(CNtBu)]+ slowly isomerizes to the trans from. The solid state structures of the CH3CN, C2H5CN and the trans‐tBuNC complexes were established by X‐ray crystallography. Electrochemical investigations of the nitrile complexes 2 a – d show in addition to a chemically reversible one‐electron oxidation an irrversible reduction step. In CH2Cl2 solution, cis‐ and trans‐[Ru(dppm)2Cl2] have been identified as the final products of the electrochemically induced reaction sequence.  相似文献   

15.
Eight tris(β-diketonate)gallium(III) and seven tris(β-diketonate)-indium(III) complexes M(RCOCH-COR′)3, with R′being difluoromethyl and trifluoromethyl substituents and R′ being methyl, phenyl, aryl, 2′-naphthyl and 2′-thienyl substituents have been studied by nuclear magnetic resonance spectroscopy. The complexes are all nonrigid (fluxional) and their 19F NMR spectra show four resonances in the nonexchanging regions due to cis and trans isomers. A variable low temperature study of these complexes was done for the gallium chelates and activation parameters are calculated. The indium complexes all have nonexchanging regions below ?100°C. The 13C NMR data on the complexes are also reported.  相似文献   

16.
The paper describes the synthesis of geometrical isomers and diastereomers of Pt(II) bischelates with diastereomeric hydroxy-amino acids threonine (threo-α-amino-β-hydroxybutyric acid CH3C*H(OH)C*H(NH2)COOH=ThrH) and allothreonine (erythro-α-amino-β-hydroxybutyric acid=alloThrH) containing two asymmetric carbon atoms C*: cis-,trans-[Pt(S-Thr)2], cis-,trans-[Pt(RThr)(S-Thr)], cis-,trans-[Pt(R-alloThr)(S-alloThr)] (where R and S are the absolute configurations of the asymmetric carbon atom bonded to the carboxyl group). 195Pt NMR spectroscopy is used to investigate the successive phases of the synthesis of the stereoisomeric Pt(II) complexes with threonine. The synthesized complexes are studied by 1H, 13C, 195Pt NMR spectroscopy, IR spectroscopy, and single crystal XRD.  相似文献   

17.
New palladium(II) and platinum(II) complexes of saccharinate (sac), trans-[Pd(py)2(sac)2] (1), cis-[Pt(py)2(sac)2] (2), trans-[Pd(3-acpy)2(sac)2] (3) and cis-[Pt(3-acpy)2(sac)2] (4) (py = pyridine and 3-acpy = 3-acetylpyridine) have been synthesized. Elemental analysis, UV-Vis, IR, NMR and TG/DTA characterizations have been carried out. The structures of 1-4 were determined by X-ray diffraction. The palladium(II) and platinum(II) ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of py or 3-acpy, forming a distorted square-planar geometry. The palladium(II) complexes (1 and 3) are trans isomers, while the platinum(II) complexes (2 and 4) are cis isomers. The mononuclear species in the solid state are connected by weak intermolecular C-H?O hydrogen bonds, C-H?π and π?π stacking interactions. The platinum(II) complexes show significant fluorescence at the room temperature.  相似文献   

18.
Low temperature 13C NMR spectra of 80:20 mixtures of cis and trans-4? CH3? CH3? C6H10CH2X, where ? C6H10-is 1, 4-disubtituted cyclohexyl and X=Br, CN, OH, OCH3, Si(CH3)3, Sn(CH3)3, Pb(CH3)3 and HgOCOCH3 have been recorded. The signals of the trans (e, e) components were assigned from the ambient temperature spectra of C6H11CH2X and the established substituent effects of an equatorial methyl group in cyclohexane. Conformational equilibria of the cis (e, a?a, e) components were then computed from the intensities of the (remaining) signals (~180 K) of the two conformational isomers. From these equilibria A values of CH2X were calculated, assuming additivity of conformational energies of CH3 and CH2X (the counter-poise approach). In general, these values are very similar to the value of the CH3, although some trends do emerge. This study provides α, β, γ, and δ effects for a wide range of axial and equatorial ? CH2X groups.  相似文献   

19.
The mono-bipyridine bis carbonyl complex [Ru(bpy)(CO)2Cl2] exists in two stereoisomeric forms having a trans(Cl)/cis(CO) (1) and cis(Cl)/cis(CO) (2) configuration. In previous work we reported that only the trans(Cl)/cis(CO) isomer 1 leads by a two-electron reduction to the formation of [Ru(bpy)(CO)2]n polymeric film on an electrode surface. This initial statement was overstated, as both isomers allowed the build up of polymers. A detailed comparison of the electropolymerization of both isomers is reported here, as well as the reduction into dimers of parent stereoisomer [Ru(bpy)(CO)2(C(O)OMe)Cl] complexes 3 and 4 obtained as side products during the synthesis of 1 and 2.  相似文献   

20.
通过将2个4,4''-联吡啶基团用偶氮基团连接,我们合成了新的配体顺式-和反式-1,2-二((4,4''-联吡啶)-3-氮烯)(cis-L和trans-L),并利用trans-L与银离子和钴离子构筑了配位聚合物{[Ag2trans-L)(ClO42]·4CH3CN}n1)和{[Co(trans-L)2(H2O)2](ClO42}n2)。其中1为一维梯形链,链与链之间通过π-π以及Ag…Ag相互作用堆积;2为三维无限dendrimer结构,其Co中心具有合适的氧化还原电位,在以荧光素为光敏剂的条件下,可作为光催化剂实现光解水放氢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号