首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Dong YB  Wang HY  Ma JP  Shen DZ  Huang RQ 《Inorganic chemistry》2005,44(13):4679-4692
Two new bent bis(cyanophenyl)oxadiazole ligands, 2,5-bis(4-cyanophenyl)-1,3,4-oxadiazole (L7) and 2,5-bis(3-cyanophenyl)-1,3,4-oxadiazole (L8), were synthesized. The coordination chemistry of these ligands with various Ag(I) salts has been investigated. Seven new coordination polymers, namely, {[Ag(L7)(H2O)]ClO4}n) (1) (triclinic, P1, a = 9.342(4) A, b = 9.889(4) A, c = 10.512(4) A, alpha = 68.978(6) degrees, beta = 78.217(6) degrees, gamma = 81.851(7) degrees, Z = 2), {[Ag(L7)]SO3CF3}n (2) (monoclinic, P2(1)/n, a = 7.559(2) A, b = 23.739(6) A, c = 10.426(3) A, beta = 108.071(4) degrees, Z = 4), {[Ag(L8)]BF4 x 0.5(C6H6) x H2O}n (3) (triclinic, P1, a = 7.498(3) A, b = 10.649(4) A, c = 13.673(5) A, alpha = 98.602(5) degrees, beta = 100.004(5) degrees, gamma =110.232(5) degrees, Z = 2), {[Ag(L8)SbF6] x H2O}n (4) (triclinic, P1, a = 8.2621(9) A, b = 10.6127(12) A, c = 13.3685(15) A, alpha = 98.012(2) degrees, beta = 106.259(2) degrees, gamma = 112.362(2) degrees, Z = 2), {[Ag2(L8)2(SO3CF3)] x H2O}n (5) (triclinic, P1, a = 10.713(4) A, b = 13.449(5) A, c = 15.423(5) A, alpha = 65.908(5) degrees, beta = 74.231(5) degrees, gamma = 83.255(5) degrees, Z = 2), {[Ag2(L8)(C6H6)(ClO4)] x ClO4}n (6) (monoclinic, P2(1)/n, a = 6.9681(17) A, b = 20.627(5) A, c = 17.437(4) A, beta = 95.880(4) degrees, Z = 4), and {[Ag2(L8)(H2PO4)2]}n (7) (triclinic, P1, a = 7.956(2) A, b = 9.938(3) A, c = 14.242(4) A, alpha = 106.191(4) degrees, beta = 97.322(4) degrees, gamma = 107.392(4) degrees, Z = 1), were obtained by the combination of L7 and L8 with Ag(I) salts in a benzene/methylene chloride mixed-solvent system and fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. In addition, the luminescence and electrical conductance properties of compounds 1-6 and the host-guest chemistry of compound 3 were investigated.  相似文献   

2.
Kim DH  Koo JE  Hong CS  Oh S  Do Y 《Inorganic chemistry》2005,44(12):4383-4390
The first examples of high-dimensional mixed-valence homometallic cyano-bridged copper complexes were synthesized and characterized: net-structured [Cu(CN)(4){Cu(cyclam)}(1.5)](2)(n)()(H(2)O)(5)(n) (1), ladder-type double-chain-structured [Cu(CN)(2){Cu(CN)(2)Cu(cyclam)}](n)()(H(2)O)(n) (2), layer-structured [{Cu(CN)(2)}(2)Cu(cycalm)](n) (3), and hydrogen-bond-based 2-D [Cu(CN)(3)Cu(cyclam)](n)()(CH(3)OH)(n) (4) (cyclam = 1,4,8,11-tetraazacyclotetradecane). (1) Crystallizes in triclinic space group P with a = 8.3589(11) A, b = 13.478(2) A, c = 14.828(2) A, alpha = 66.895(2) degrees , beta = 77.916(3) degrees , gamma = 85.939(3) degrees , and Z = 1; (2) crystallizes in triclinic space group P with a = 8.2305(12) A, b = 9.8861(15) A, c = 13.219(2) A, alpha = 84.863(3) degrees , beta = 75.744(3) degrees , gamma = 89.818(3) degrees , and Z = 2; 3 crystallizes in monoclinic space group P2(1)/c with a = 6.830(2) A, b = 8.482(2) A, c = 17.306(4) A, beta = 98.144(4) degrees , and Z = 2; 4 crystallizes in triclinic space group P with a = 9.470(1) A, b = 10.034(1) A, c = 12.064(1) A, alpha = 67.325(2), beta = 75.593(2), gamma = 70.672(2), and Z = 2. The coordination sphere of Cu(I) sites in the complexes shows diverse structures: tetrahedral [CuC(4)] for (1), tetrahedral [CuC(3)N] and triangular [CuC(2)N] for (2), triangular [CuC(2)N] for (3), and triangular [CuC(3)] for 4. In particular, (1) constitutes the first example of a structurally characterized system containing a bridging tetrahedral [Cu(CN)(4)](3)(-) unit. The diverse structural nature of these complexes is governed by the capping amines and the content of water in the reaction media. The magnetic interactions are negligible in these mixed-valence complexes.  相似文献   

3.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2000,39(12):2445-2451
Treatment of the complex [W(CO)5[PPh2(CS2Me)]] (2) with [Pd(PPh3)4] (1) affords binuclear complexes such as anti-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2Me)PPh2]W(CO)5] (3), syn-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2Me)PPh2]W(CO)5] (4), and trans-[W(CO)4(PPh3)2] (5). In 3 and 4, respectively, the W and Pd atoms are in anti and syn configurations with respect to the P-CS2 bond of the diphenyl(dithiomethoxycarbonyl)phosphine ligand, PPh2(CS2Me). Complex 3 undergoes extensive rearrangement in CHCl3 at room temperature by transfer of a PPh3 ligand from Pd to W, eliminating [W(CO)5(PPh3)] (7), while the PPh2CS2Me ligand transfers from W to Pd to give [[(Ph3P)Pd[mu-eta 1,eta 2-(CS2Me)PPh2]]2] (6). In complex 6, the [Pd(PPh3)] fragments are held together by two bridging PPh2(CS2Me) ligands. Each PPh2(CS2Me) ligand is pi-bonded to one Pd atom through the C=S linkage and sigma-bonded to the other Pd through the phosphorus atom, resulting in a six-membered ring. Treatment of Pd(PPh3)4 with [W(CO)5[PPh2[CS2(CH2)nCN]]] (n = 1, 8a; n = 2, 8b) in CH2Cl2 affords syn-[(Ph3P)2Pd[mu-eta 1,eta 2-[CS2(CH2)nCN]PPh2]W(CO)5] (n = 1, 9a; n = 2, 9b). Similar configurational products syn-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2R)PPh2]W(CO)5] (R = C2H5, C3H5, C2H4OH, C3H6CN, 11a-d) are synthesized by the reaction of Pd(PPh3)4 with [W(CO)5[PPh2(CS2R)]] (R = C2H5, C3H5, C2H4OH, C3H6CN, 10a-d). Although complexes 11a-d have the same configuration as 9a,b, the SR group is oriented away from Pd in the former and near Pd in the latter. In these complexes, the diphenyl(dithioalkoxycarbonyl)phosphine ligand is bound to the two metals through the C=S pi-bonding and to phosphorus through the sigma-bonding. All of the complexes are identified by spectroscopic methods, and the structures of complexes 3, 6, 9a, and 11d are determined by single-crystal X-ray diffraction. Complexes 3, 9, and 11d crystallize in the triclinic space group P1 with Z = 2, whereas 6 belongs to the monoclinic space group P2/c with Z = 4. The cell dimensions are as follows: for 3, a = 10.920(3) A, b = 14.707(5) A, c = 16.654(5) A, alpha = 99.98(3) degrees, beta = 93.75(3) degrees, gamma = 99.44(3) degrees; for 6, a = 15.106(3) A, b = 9.848(3) A, c = 20.528(4) A, beta = 104.85(2) degrees; for 9a, a = 11.125(3) A, b = 14.089(4) A, c = 17.947(7) A, alpha = 80.13(3) degrees, beta = 80.39(3) degrees, gamma = 89.76(2) degrees; for 11d, a = 11.692(3) A, b = 13.602(9) A, c = 18.471(10) A, alpha = 81.29(5) degrees, beta = 80.88(3) degrees, gamma = 88.82(1) degrees.  相似文献   

4.
The organomercurial compounds Hg[1-C(6)H(4)-2-C(H)=NC(6)H(5-n)R(n)](2) (R = 4-NMe(2), 6a; 4-Me, 6b; 4-I, 6c; 4-NO(2), 6d; 2-(i)Pr, 6e; 2-Me, 6f; 2,6-(i)Pr(2), 6g; 2,6-Me(2), 6h) have been prepared in good overall yield from 2-bromobenzaldehyde. All of the compounds have been characterized by elemental analysis, (1)H NMR, (13)C[(1)H] NMR, and infrared spectroscopy. In addition, compounds 6a [C(30)H(30)HgN(4), triclinic, P, a = 6.20000(10) A, b = 9.2315(2) A, c = 10.9069(3) A, alpha = 85.8510(10) degrees, beta = 89.3570(10) degrees, gamma = 87.206(2) degrees, Z = 1], 6b [C(28)H(24)HgN(2), monoclinic, P2(1)/c, a = 12.8260(5) A, b = 14.0675(4) A, c = 6.1032(2) A, beta = 90.0990(10) degrees, Z = 2], 6g [C(38)H(44)HgN(2), triclinic, P, a = 8.2626(2) A, b = 9.8317(2) A, c = 11.8873(3) A, alpha = 103.6650(10) degrees, beta = 109.3350(10) degrees, gamma = 104.627(2) degrees, Z = 1], and 6h [C(30)H(28)HgN(2), monoclinic, P2(1)/c, a = 12.5307(2) A, b = 10.9852(2) A, c = 18.2112(2) A, beta = 104.0190(10) degrees, gamma = 87.206(2) degrees, Z = 4] have been characterized by low-temperature single-crystal X-ray diffraction studies, and two different molecular geometries about the central mercury atom have been observed; intramolecular contacts suggest a van der Waals radius for Hg of 2.1-2.2 A.  相似文献   

5.
The synthesis and the spectroscopic and structural characterization of lower-rim-silylated and rare-earth-metalated calix[4]arenes are presented. Hexamethyldisilazane, HN(SiMe3)2, reacted in a selective manner with [p-tert-buttylcalix[4]arene]H4 (1) in refluxing mesitylene to give the 1,3-silylated product [p-tert-butylcalix[4]arene(SiMe3)2]H2 (2) in high yield. The molecular structure of compound 2, as revealed by X-ray crystallography, shows the pinched cone conformation of the calixarene bowl, featuring hydrogen bonding between the phenylsilyl ether and phenolic oxygen atoms (O...O, 2.838 A). From the reaction of the sterically more crowded tetraphenyldimethyldisilazane, HN(SiMePh2)2, only starting material could be recovered. In contrast, tetramethyldisilazane, HN(SiHMe2)2, afforded the tetrakis-silylated product [p-tert-butylcalix[4]arene(SiHMe2)4] (3) in hexane solution at ambient temperature. A single-crystal X-ray diffraction study of compound 3 established the 1,2-alternate conformation, which is also present in solution, as indicated by 1H NMR spectroscopy. The yttrium complex Y[N(SiHMe2)2]3(THF)2 (4) exchanged all of its silylamide ligands when treated with an equimolar amount of 1 in toluene at ambient temperature to yield compound 5, as indicated by IR and NMR spectroscopy. The molecular structure of 5 revealed a centrosymmetric dimer of composition [Y(p-tert-butylcalix[4]arene(SiHMe2)(THF)]2. Three of the deprotonated phenolic oxygen atoms of the calixarene bowl bind to the metal center, two as terminal ligands and one in a bridging mode, while the fourth undergoes in situ silylation (nu(SiH) 2127 cm-1). The distorted-trigonal-bipyramidal coordination geometry is completed by a THF molecule. Bis-silylated 2 reacted with 4 to form the heteroleptic complex (Y[p-tert-butylcalix[4]arene(SiMe3)2][N(SiHMe2)2]) (6). Crystal data: C50H72O4Si2 (2), triclinic, P1, a = 12.8914(3) A, b = 14.9270(5) A, c = 15.1652(4) A, alpha = 77.293(2) degrees, beta = 65.019(2) degrees, gamma = 72.234(2) degrees, Z = 2; C52H80O4Si4 (3), triclinic, P1, a = 10.1774(2) A, b = 14.1680(2) A, c = 18.7206(2) A, alpha = 95.8195(8) degrees, beta = 95.5294(8) degrees, gamma = 98.1098(7) degrees, Z = 2; C100H132O10Si2Y2, 2(C6H6) (5), triclinic, P1, a = 13.2625(4) A, b = 14.5894(3) A, c = 17.0458(5) A, alpha = 65.0986(14) degrees, beta = 77.8786(8) degrees, gamma = 85.5125(13) degrees, Z = 1.  相似文献   

6.
Eight- and 16-membered cyanuric-sulfanuric ring systems of the type Ar2C2N4S2(O)2Ar'2 (3a, Ar = 4-BrC6H4, Ar' = Ph; 3b, Ar = 4-CF3C6H4, Ar' = Ph; 3c, Ar = 4-CF3C6H4, Ar' = 4-CH3C6H4) and Ar4C4N8S4(O)4Ar'4 (4b, Ar = 4-CF3C6H4, Ar' = Ph; 4c, Ar = 4-CH3C6H4, Ar' = Ph; 4d, Ar = 4-CF3C6H4, Ar' = 4-CH3C6H4), respectively, were prepared in good yields by the reaction of the corresponding sulfur(IV) systems with m-chloroperbenzoic acid. The X-ray structures of 3b, 3c.C7H14, 4b.CH2Cl2, 4c, and the S(IV) system Ar4C4N8S4Ar'4 (2c, Ar = 4-CH3C6H4, Ar' = Ph) were determined. Upon oxidation the two oxygen atoms in 3b and 3c.C7H14 adopt endo positions leading to a twist boat conformation for the C2N4S2 ring. The 16-membered C4N8S4 rings in 4b and 4c retain a cradle conformation upon oxidation. The S-N bond distances are ca. 0.06 A shorter in all the S(VI) systems compared to those in the corresponding S(IV) rings. The thermolysis of 3b at ca. 220 degrees C occurs primarily via loss of a sulfanuric group, NS(O)Ph, to give the six-membered ring (4-CF3C6H4)2C2N3S(O)Ph (6). The structure of 6 was confirmed by X-ray crystallography. Crystal data: 2c, triclinic, space group P1 with a = 13.917(2) A, b = 15.610(4) A, c = 13.491(3) A, alpha = 95.77(2) degrees, beta = 114.82(1) degrees, gamma = 76.21(2) degrees, V = 2583(1) A3, and Z = 2; 3b, monoclinic, space group P2(1)/a with a = 7.316(2) A, b = 29.508(5) A, c = 12.910(2) A, beta = 101.30(2) degrees, V = 2733(1) A3, and Z = 4; 3c.C7H14, triclinic, space group P1 with a = 12.849(4) A, b = 12.863(4) A, c = 12.610(7) A, alpha = 110.61(3) degrees, beta = 105.77(3) degrees, gamma = 62.77(2) degrees, V = 1719(1) A3, and Z = 2; 4b.CH2Cl2, triclinic, space group P1 with a = 12.647(3) A, b = 19.137(3) A, c = 12.550(2) A, alpha = 105.765(11) degrees, beta = 93.610(15) degrees, gamma = 88.877(16) degrees, V = 2917.2(9) A3, and Z = 2; 4c, orthorhombic, space group Pba2 with a = 22.657(2) A, b = 10.570(2) A, c = 10.664(3) A, alpha = beta = gamma = 90 degrees, V = 2554(1) A3, and Z = 2; 6, triclinic, space group P1 with a = 7.4667(8) A, b = 11.3406(12) A, c = 13.5470(14) A, alpha = 108.000(2) degrees, beta = 105.796(2) degrees, gamma = 94.300(2) degrees, V = 1033.8(2) A3, and Z = 2.  相似文献   

7.
Highly cross-linked cluster precursors KZr6I14B, Zr6I12B, KZr6I14C, and Zr6I12C were, successfully excised in deoxygenated water, and the resulting red aqueous solutions of clusters exhibit better kinetic stability with respect to decomposition than their chloride and bromide analogues. On traversing the Cl-->I series, NMR measurements show increasing deshielding of the interstitial atoms (Z = B, C) in Zr6ZX12 clusters and cyclic voltammetry reveals increasingly positive reduction potentials for the [(Zr6BX12)(H2O)6]+ ions. Several new cluster complexes have been crystallized from aqueous or methanolic solutions. Crystallographic data for these compounds are as follows: [(Zr6BI12)(H2O)6]Ix11.7(H2O) (1), triclinic, P1, a = 10.2858(7) A, b = 11.3045(8) A, c = 20.808(1) A, alpha = 77.592(1) degrees, beta = 79.084(1) degrees, gamma = 77.684(1) degrees, Z = 2; [(Zr6BI12)]+[I(CH3OH)6]- (2), hexagonal, R3, a = 17.706(1) A, c = 13.910(1) A, Z = 3, [(Zr6CI12)(H2O)6]I(2).4(H2O) (3), triclinic, P1, a = 10.1566(5) A, b = 10.4513(5) A, c = 10.7549(6) A, alpha = 117.552(1) degrees, beta = 96.443(1) degrees, gamma = 96.617(1) degrees, Z = 1.  相似文献   

8.
Du M  Bu XH  Huang Z  Chen ST  Guo YM  Diaz C  Ribas J 《Inorganic chemistry》2003,42(2):552-559
The reaction of various CuII salts with 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L) in CH3CN-H2O medium affords different complexes, the solid structures of which are controlled only by the choice of the counteranions. Reaction of Cu-(ClO4)2.6H2O or Cu(NO3)2.3H2O and L yields the novel bimetallic macrocyclic complex [Cu2L2(H2O)6](ClO4)4(H2O)4 (1) [monoclinic, space group P21/m, a = 8.745(5) A, b = 16.179(10) A, c = 14.930(8) A, beta = 93.253(10) degrees, Z = 2] or [CuL(NO3)2]2(CH3CN)2 (2) [triclinic, space group P1, a = 7.863(3) A, b = 8.679(3) A, c = 13.375(5) A, alpha = 74.121(5) degrees, beta = 78.407(6) degrees, gamma = 86.307(6) degrees, Z = 1]. However, with the replacement of CuII perchlorate or nitrate salts with CuSO4.5H2O or Cu(OAc)2.H2O in the above reaction, two different one-dimensional (1-D) coordination polymers [[Cu2L2(H2O)6(SO4)2](H2O)6]n (3) [triclinic, space group P1, a = 7.078(3) A, b = 11.565(4) A, c = 12.561(5) A, alpha = 109.511(6) degrees, beta = 105.265(6) degrees, gamma = 94.042(6) degrees, Z = 1] or [[Cu2L(mu-OAc)4]]n (4) [monoclinic, space group C2/c, a = 20.007(7) A, b = 7.506(2) A, c = 16.062(5) A, beta = 108.912(5) degrees, Z = 4] were obtained. These results unequivocally indicate that the nature of the counteranions, which play different roles in each complex, is the key factor governing the structural topologies of them. The magnetic properties of these CuII complexes have been investigated by variable-temperature magnetic susceptibility and magnetization measurements, and the magneto-structural correlation has been analyzed in detail.  相似文献   

9.
Five new open-framework zinc phosphates, encompassing the entire hierarchy of open-framework structures, have been synthesized hydrothermally in the presence of triethylenetetramine. The structures include one-dimensional ladders, two-dimensional layers, and three-dimensional structures as well as a zinc phosphate where the amine acts as a ligand. [C6N4H22]0.5[Zn(HPO4)2] (I): monoclinic, space group P2(1)/c (no. 14), a = 5.2677(1) A, b = 13.3025(1) A, c = 14.7833(1) A, beta = 96.049 degrees, Z = 4. [C6N4H22]0.5[Zn2(HPO4)3] (II): triclinic, space group P1 (no. 2), a = 7.515(1) A, b = 8.2553(1) A, c = 12.911(1) A, alpha = 98.654(1) degrees, beta = 101.274(1) degrees, gamma = 115.791(1) degrees, Z = 2. [C6N4H22]0.5[Zn2P2O8] (III): triclinic, space group P1 (no. 2), a = 8.064(1) A, b = 8.457(1) A, c = 9.023(1) A, alpha = 111.9(1) degrees, beta = 108.0(1) degrees, gamma = 103.6(1) degrees, Z = 2. [C6N4H22]0.5[Zn3(PO4)2(HPO4)] (IV): triclinic, space group P1 (no. 2), a = 5.218(1) A, b = 8.780(1) A, c = 16.081(1) A, alpha = 89.3(1) degrees, beta = 83.5(1) degrees, gamma = 74.3(1) degrees, Z = 2. [C6N4H20]0.5[Zn4P4O16] (V): monoclinic, space group P2(1)/c (no. 14), a = 9.219(1) A, b = 15.239(1) A, c = 10.227(1) A, beta = 105.2(1), Z = 4. The structure of I is composed of ZnO4 and HPO4 tetrahedra, which are edge-shared to form four-membered rings, which, in turn, form a one-dimensional chain (ladder). In II, these ladders are fused into a layer. The structures of III and IV comprise networks of ZnO4 and PO4 tetrahedra forming three-dimensional architectures. In V, the amine molecule coordinates to the Zn and acts as a pillar supporting the zinc phosphate layers, which possess infinite Zn-O-Zn linkages. The 16-membered one-dimensional channel in IV and the ZnO3N pillar, along with infinite Zn-O-Zn linkages in V, are novel features. The structure of the open-framework zinc phosphates is found to depend sensitively on the relative concentrations of the amine and phosphoric acid, with high concentrations of the latter favoring structures with lower dimensions.  相似文献   

10.
Five one-dimensional coordination polymers, Ni(BDC)(1,10-phen) (1), Ni(BDC)(2,2'-bipy).0.75H(2)BDC (2), Ni(BDC)(1,10-phen)(H(2)O) (3), Ni(BDC)(1,10-phen)(H(2)O).0.5H(2)BDC (4) and Ni(BDC)(2,2'-bipy)(H(2)O) (5) [where BDC = 1,4-benzenedicarboxylate, 2,2-bipy = 2,2'-bipyridine, and 1,10-phen = 1,10-phenanthroline] that have the same topology but markedly different geometry and packing of the chains have been synthesized by hydrothermal reactions. The results of variations of synthesis conditions and substitutions of 1,10-phenanthroline with 2,2'-bipyridine indicate that incorporation of the coordinating water molecule, which affects the degree of bending of the chain, is primarily influenced by the amine ligand size, suggesting a substantial structural role of aromatic-aromatic interactions and amine ligand steric effects. The incorporation of the guest H(2)BDC molecules was found to be favored by lower pH conditions. Crystal data: 1, monoclinic, space group P2(1)/n, a = 9.5589(6) A, b = 12.6776(8) A, c = 13.5121(9) A, beta = 95.437(1) degrees, Z = 4; 2, monoclinic, space group P2(1)/c, a = 20.532(3) A, b = 21.505(3) A, c = 18.872(3) A, beta = 93.86(1) degrees, Z = 16; 3, triclinic, space group P1, a = 8.618(3) A, b = 10.058(4) A, c = 11.353(4) A, alpha = 115.31(1) degrees, beta = 92.33(1) degrees, gamma = 94.03(1) degrees, Z = 2; 4, triclinic, space group P1, a = 9.7682(12) A, b = 10.6490(13) A, c = 11.2468(14) A, alpha = 76.685(2) degrees, beta = 65.309(2) degrees, gamma = 85.612(2) degrees, Z = 2; 5, monoclinic, space group P2(1)/c, a = 13.9683(9) A, b = 17.4489(11) A, c = 13.7737(9) A, beta = 99.12(1) degrees, Z = 8.  相似文献   

11.
Thermolysis of (iPrO)4V and 2,6-dihydroxynaphthalene in 4-(3-phenylpropyl)pyridine afforded [mer-V(mu 2,6-OC10H6O)1.5(4-(3-phenylpropyl)py)3]n (1; C57H54N3O3V, triclinic, P1, a = 10.450(2) A, b = 14.098(3) A, c = 16.765(3) A, alpha = 100.09(3) degrees, beta = 103.85(3) degrees, gamma = 103.08(3) degrees, Z = 2) and oxidation product bis-2,6-dinaphthol. Paramagnetic (S = 1) 1 adopts a bricklike motif of aryldioxide-connected V(III) centers whose channels are filled with the bound 4-(3-phenylpropyl)py. A similar procedure involving (iPrO)3VO provided the linear chain [(mu 2,6-OC10H6O)(4-(3-phenylpropyl)py)2VO]n (2; C38H36N2O3V, monoclinic, P2(1)/c, a = 10.6172(2) A, b = 9.4477(3) A, c = 31.8129(8) A, beta = 95.20(3) degrees, Z = 4). Interchain pyridine ring-edge to phenyl-face interactions generate a sheet of like-oriented oxos, but adjacent sheets are oriented in opposition so that no net dipole exists. Another 1-dimensional chain, [(mu 1,4-OC6H4O)(py)2VO]n (3; C16H14N2O3V, monoclinic, P2(1)/c, a = 8.377(2) A, b = 16.675(3) A, c = 11.061(2) A, beta = 103.91(3) degrees, Z = 4), was prepared by heating (iPrO)4V and hydroquinone in pyridine. Pyridines of adjacent chains interpenetrate to form a sheet, but oxos in adjacent chains are now in opposition.  相似文献   

12.
Dong YB  Zhang Q  Wang L  Ma JP  Huang RQ  Shen DZ  Chen DZ 《Inorganic chemistry》2005,44(19):6591-6608
Two new bent oxadiazole bridging benzoacetylene ligands 2,5-bis(4-ethynylphenyl)-1,3,4-oxadiazole (L9) and 2,5-bis(3-ethynylphenyl)-1,3,4-oxadiazole (L10) were synthesized. The coordination chemistry of them with various inorganic Ag(I) salts has been investigated. Seven new coordination polymers were prepared by solution reactions and fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. [Ag2(L9)](SO3CF3)2 (1) (triclinic, P; a =10.292(4), b = 10.794(4), c = 11.399(5) A; alpha = 98.894(5), beta = 102.360(6), gamma = 90.319(5) degrees ; Z = 2), [Ag(L9)]SbF6 (2) (orthorhombic, Cmca; a = 19.059(9), b = 12.922(6), c = 15.609(7) A; Z = 8), [Ag(L9)]BF4 (3) (orthorhombic, Cmca; a = 19.128(3), b = 12.6042(18), c = 28.003(4) A; Z = 16), [Ag(L9)]ClO4 (4) (monoclinic, P2(1)/c; a = 8.5153(16), b = 19.722(4), c = 10.320(2) A; beta = 105.307(3) degrees ; Z = 4), [Ag(L10)]SO3CF3 (5) (triclinic, P; a = 9.0605(13), b = 10.4956(15), c = 10.8085(16) A; alpha = 101.666(2), beta = 109.269(2), gamma = 100.944(2) degrees ; Z = 2), [Ag(L10)(H2O)(0.5)]BF4.0.5H2O (6) (monoclinic, C2/m; a = 32.180(6), b = 17.027(3), c = 8.1453(15) A; beta = 102.541(3) degrees ; Z = 8), and {[Ag2(L10)2(H2O)](ClO4)2}.o-xylene (7) (monoclinic, P2(1)/c; a = 8.1460(10), b = 17.326(2), c = 30.345(4) A; beta = 97.71 degrees ; Z = 4) were obtained by the combination of L9 and L10 with various Ag(I) salts in a benzene/methylene chloride mixed solvent system. In addition, the luminescent and electrical conductive properties of these new compounds were investigated.  相似文献   

13.
New precursors to potentially conductive noninteger oxidation state (NIOS) compounds based on metal complexes [ML(2)](n)()(-) [M = Ni, Pd, Pt; L = 5,6-dihydro-1,4-dithiin-2,3-dithiolato (dddt(2)(-)), 5,7-dihydro-1,4,6-trithiin-2,3-dithiolato (dtdt(2)(-)), and 2-thioxo-1,3-dithiole-4,5-dithiolato (dmit(2)(-)); n = 2, 1, 0] have been investigated. Complexes of the series (NR(4))[ML(2)] (R = Me, Et, Bu; L = dddt(2)(-), dtdt(2)(-)) have been isolated and characterized, and the crystal structure of (NBu(4))[Pt(dtdt)(2)] (1) has been determined {1 = C(24)H(44)NPtS(10), a = 12.064(2) ?, b = 17.201(3) ?, c = 16.878(2) ?, beta = 102.22(2) degrees, V = 3423(1) ?(3), monoclinic, P2(1)/n, Z = 4}. Oxidation of these complexes affords the corresponding neutral species [ML(2)](0). Another series of general formula (cation)(n)()[M(dmit)(2)] [cation = PPN(+), BTP(+), and (SMe(y)()Et(3)(-)(y)())(+) with y = 0, 1, 2, and 3, n = 2, 1, M = Ni, Pd] has also been studied. All of these (cation)(n)()[M(dmit)(2)] complexes have been isolated and characterized [with the exception of (cation)[Pd(dmit)(2)] for cation = (SMe(y)()Et(3)(-)(y)())(+)]. The crystal structures of (PPN)[Ni(dmit)(2)].(CH(3))(2)CO (2) and (SMeEt(2))[Ni(dmit)(2)] (3) have been determined {2 = C(45)H(36)NNiS(10)P(2)O, a = 12.310(2) ?, b = 13.328(3) ?, c = 15.850(3) ?, alpha = 108.19(3) degrees, beta = 96.64(2) degrees, gamma = 99.67(2) degrees, V = 2373(1) ?(3), triclinic, P&onemacr;, Z = 2; 3 = C(11)H(13)NiS(11), a = 7.171(9) ?, b = 17.802(3) ?, c = 16.251(3) ?, beta = 94.39(4) degrees, V = 2068(2) ?(3), monoclinic, P2(1)/n, Z = 4} NIOS salts derived from the preceding precursors were obtained by electrochemical oxidation. Electrochemical studies of the [M(dddt)(2)] complexes show that they may be used for the preparation of NIOS radical cation salts and [M(dddt)(2)][M'(dmit)(2)](x)() compounds, but not for the preparation of (cation)[M(dddt)(2)](z)() NIOS radical anion salts. The electrochemical oxidation of the [M(dtdt)(2)](-) complexes always yields the neutral [M(dtdt)(2)](0) species. The crystal structure of [Pt(dddt)(2)][Ni(dmit)(2)](2) (4) has been determined and is consistent with the low compaction powder conductivity (5 x 10(-)(5) S cm(-)(1) at room temperature) {4 = C(20)H(8)Ni(2)PtS(28), a = 20.336(4) ?, b = 7.189(2) ?, c = 14.181(2) ?, beta = 97.16(2) degrees, V = 2057(1) ?(3), monoclinic, C2/m, Z = 2}. The crystal structures of the semiconducting NIOS compounds (BTP)[Ni(dmit)(2)](3) (5) and (SMe(3))[Ni(dmit)(2)](2) (6) have been determined {5 = C(43)H(22)PNi(3)S(30), a = 11.927(2) ?, b = 24.919(2) ?, c = 11.829(3) ?, alpha = 93.11(1) degrees, beta = 110.22(1) degrees, gamma = 83.94(1) degrees, V = 3284(1) ?(3), triclinic, P&onemacr;, Z = 2; 6 = C(15)H(9)Ni(2)S(21), a = 7.882(1) ?, b = 11.603(2) ?, c = 17.731(2) ?, alpha = 77.44(1) degrees, beta = 94.39(1) degrees, gamma = 81.27(1) degrees, V = 1563(1) ?(3), triclinic, P&onemacr;, Z = 2}. The parent compound (SEt(3))[Ni(dmit)(2)](z) (unknown stoichiometry) is also a semiconductor with a single-crystal conductivity at room temperature of 10 S cm(-)(1). By contrast, the single-crystal conductivity at room temperature of (SMeEt(2))[Pd(dmit)(2)](2) (7) is rather high (100 S cm(-)(1)). 7 behaves as a pseudometal down to 150 K and undergoes an irreversible metal-insulator transition below this temperature. The crystal structure of 7 has been determined {7 = C(17)H(13)NPd(2)S(21), a = 7.804(4) ?, b = 36.171(18) ?, c = 6.284(2) ?, alpha = 91.68(4) degrees, beta = 112.08(4) degrees, gamma = 88.79(5) degrees, V = 1643(1) ?(3), triclinic, P&onemacr;, Z = 2}. The electronic structure of (SMeEt(2))[Pd(dmit)(2)](2) (7) and the possible origin of the metal-insulator transition at 150 K are discussed on the basis of tight-binding band structure calculations.  相似文献   

14.
The reactions of (facac)2Zn.2H2O (facac = 1,1,1,5,5,5-hexafluoroacetylacetonate) with 2,5-bis(4-ethynylpyridyl)furan (1) and 1,2-bis(4-ethynylpyridyl)benzene (2) yield, upon crystallization, coordination polymers. The former polymer, ((facac)2Zn.1)n, has an isotactic, helical structure in the solid state [monoclinic space group P2(1)/n; a = 11.0374(3) A, b = 24.2179(10) A, c = 14.3970(4) A, beta = 92.880(2) degrees; Z = 4]. The latter polymer, ((facac)2Zn.2)n, adopts a syndiotactic structure in the solid state [monoclinic space group P2(1)/n; a = 9.1344(1) A, b = 21.7985(5) A, c = 16.0322(4) A, beta = 99.6680(11) degrees; Z = 4]. The solution structures of the corresponding oligomers have been studied by low-temperature 1H and 19F NMR spectroscopy. Chiral polymers were prepared using the fragment [(+)-tfc]2Zn ((+)-tfc = 3-((trifluoromethyl)hydroxymethylene)-(+)-camphorate). A linear, zigzag structure was found for ([(+)-tfc]2Zn.1)n [triclinic space group P1; a = 7.4833(2) A, b = 14.1563(5) A, c = 21.21230(5) A, alpha = 78.4440(15) degrees, beta = 81.5644(15) degrees, gamma = 76.4976(13) degrees; Z = 1]. Reaction with tris(4-pyridyl)methanol (3) yielded a homochiral, helical polymer, ([(+)-tfc]2Zn.3)n [monoclinic space group C2; a = 25.0633(12) A, b = 11.8768(7) A, c = 17.1205(9) A, alpha = 90 degrees, beta = 117.954(3) degrees, gamma = 90 degrees; Z = 4].  相似文献   

15.
Six dinuclear ferrous complexes including [Fe2(acpypentO)(O2CMe)(NCS)2] (1), [Fe2(acpypentO)(O2CMe)(NCSe)2] (2), [Fe2(acpypentO)(NCO)3] (3), ([Fe2(acpybutO)(O2CMe)(NCS)2] (5), [Fe2(acpybutO)(O2CMe)(NCO)2] (6), and [Fe2(acpybutO)(O2CMe)(N3)2] (7), one tetranuclear (bis-dinuclear) ferrous compound, [Fe4(acpypentO)2(N3)6] (4), and one mononuclear ferrous compound, [Fe(acpybutOH)(NCS)2] (8), have been prepared, and their structures and magnetic and M?ssbauer properties have been studied (acpybutOH = 1,4-bis[[2-pyridyl(1-ethyl]imino)]butane-2-ol and acpypentOH = 1,5-bis[[2-pyridyl(1-ethyl]imino)]pentane-3-ol). The X-ray diffraction analyses yielded the following results: 1 (C23H26Fe2N6O3S2, monoclinic, P2(1)/n, a = 8.0380(7) A, b = 12.4495(8) A, c = 27.358(2) A, beta = 92.180(10) degrees, V = 2735.7(4) A(3), Z = 4) is a dinuclear species in which the unequivalent high-spin (HS) Fe(II) sites are bridged by the alkoxo oxygen atom of the symmetrical acpypentO- Schiff base and one syn-syn acetato anion; 3 (C22H23Fe2N7O4, triclinic, Ponemacr;, a = 8.4152(10) A, b = 9.1350(10) A, c = 17.666(2) A, alpha = 97.486(14) degrees, beta = 100.026(14) degrees, gamma = 113.510(13) degrees, V = 1195.9(2) A3, Z = 2) is a dinuclear species in which the unequivalent HS Fe(II) sites are bridged by the alkoxo oxygen atom of the symmetrical acpypentO- Schiff base and one end-on NCO anion; 4-MeOH (C39H50Fe4N26O3, triclinic, Ponemacr;, a = 9.1246(11) A, b = 10.2466(11) A, c = 14.928(2) A, alpha = 91.529(15) degrees, beta = 101.078(16) degrees, gamma = 106.341(14) degrees, V = 1309.6(3) A3, Z = 1) is a bis-dinuclear species in which the unequivalent HS Fe(II) sites are bridged by the alkoxo oxygen atom of the symmetrical acpypentO- Schiff base and one end-on N(3)(-) anion, and the symmetry related Fe(II) sites are bridged by two end-on N3- anions; 8-MeOH (C21H26FeN6O2S2, triclinic, Ponemacr;, a = 8.7674(9) A, b = 12.0938(13) A, c = 12.2634(14) A, alpha = 106.685(14) degrees, beta = 93.689(14) degrees, gamma = 108.508(13) degrees, V = 1163.7(2) A3, Z = 2) is a mononuclear species in which the octahedral low-spin (LS) Fe(II) site is in an N6 environment provided by the four N atoms of the protonated asymmetrical acpybutOH Schiff base and two thiocyanato anions. The M?ssbauer spectra of all dinuclear species (1-3 and 5-7), and of the bis-dinuclear compound 4, evidence two distinct HS Fe(II) sites while the M?ssbauer spectra of the mononuclear compound 8 evidence a LS Fe(II) site over the 80-300 K temperature range. The temperature dependence of the magnetic susceptibility was fitted with J = -13.7 cm(-1), D = -1.8 cm(-1), and g = 2.096 for 1; J = 3.0 cm(-1), D(1) = 1.6 cm(-1), E(1) = -0.35 cm(-1) (lambda(1) = 0.22), D2 = - 12.2 cm(-1), E2 = 1.1 cm(-1) (lambda2 = 0.09), and g = 2.136 for 3; and J(1) = - 0.09 cm(-1), J(2) = 15.9 cm(-1), D(1) = 5.7 cm(-1), D(2) = 12.1 cm(-1), and g = 1.915 for 4. The nature of the ground state in 3 and 4 was confirmed by simulation of the magnetization curves at 2 and 5 K. The intradinuclear interaction through the central O(alkoxo) of the acpypentO- ligand and one pseudohalide bridges is ferromagnetic in 3 (end-on cyanato) while it is very weakly antiferromagnetic in 4 (end-on azido). The interdinuclear interaction through two end-on azido bridges (4) is ferromagnetic as expected. In agreement with the symmetry of the two iron sites of complexes 3 and 4, the fits show that D2 (tetragonal pyramid) is larger than D1 (distorted trigonal bipyramid (3) or distorted octahedron (4)).  相似文献   

16.
Intermediates in the condensation process of [MS(4)](2)(-) (M = Mo, W) to polythiometalates, in the presence of alkyl halides, had not been reported prior to our communication of [PPh(4)][WS(3)(SEt)] (Boorman, P. M.; Wang, M.; Parvez, M. J. Chem. Soc., Chem. Commun. 1995, 999-1000). We now report the isolation of a range of related compounds, with 1 degrees, 2 degrees, and 3 degrees alkyl thiolate ligands, including one Mo example. [PPh(4)][WS(3)(SR)] (R = (i)Bu (1), (i)Pr (2), (t)Bu (3), benzyl (5), allyl (6)) and [PPh(4)][MoS(3)(S(t)Bu)] (4) have been isolated in fair to good yields from the reaction of [PPh(4)](2)[MS(4)] with the appropriate alkyl halide in acetonitrile and subjected to analysis by X-ray crystallography. Crystal data are as follows: for 1, triclinic space group P1 (No. 2), a = 11.0377(6) A, b = 11.1307(5) A, c = 13.6286(7) A, alpha = 82.941(1) degrees, beta = 84.877(1) degrees, gamma = 60.826(1) degrees, Z = 2; for 2, monoclinic space group P2(1)/c (No. 14), a = 9.499(6) A, b = 15.913(5) A, c = 18.582(6) A, beta = 99.29(4) degrees, Z = 4; for 3, monoclinic space group P2(1)/n (No. 14), a = 10.667(2) A, b = 17.578(2) A, c = 16.117(3) A, beta = 101.67(1) degrees, Z = 4; for 4, monoclinic space group P2(1)/n (No. 14), a = 10.558(3) A, b = 17.477(3) A, c = 15.954(3) A, beta = 101.18(2) degrees, Z = 4; for 5, monoclinic space group P2(1)/n (No. 14), a = 16.2111(9) A, b = 11.0080(6) A, c = 18.1339(10) A, beta = 111.722(1) degrees, Z = 4; for 6, triclinic space group P1 (No. 2), a = 9.4716(9) A, b = 10.4336(10) A, c = 14.4186(14) A, alpha = 100.183(2) degrees, beta = 90.457(2) degrees, gamma = 91.747(2) degrees, Z = 2. Structures 3 and 4 are isomorphous, and 1 exhibits disorder about the tertiary carbon. 6 has been shown to exhibit fluxionality in solution by variable-temperature (1)H NMR studies, and an allyl migration mechanism is implicated in this process. The kinetics for the reaction of [WS(4)](2)(-) and EtBr were measured and suggest an associative nucleophilic substitution (S(N)2) mechanism. The decomposition of the [WS(3)(SEt)](-) ion is shown to be second order with respect to this ion, suggesting the formation of a transient binuclear intermediate. M-S bond cleavage is the predominant step in decomposition of 1-6 to yield alkyl sulfides, alkyl thiols, and polythiometalates such as [PPh(4)](2)[M(3)S(9)]. In contrast, reactions of [PPh(4)](2)[WO(x)()S(4)(-)(x)()] (x = 1, 2) with (t)BuBr result in the additional decomposition product of isobutene, presumably by C-S bond cleavage and beta-hydrogen transfer. Interestingly, the reaction of [PPh(4)](2)[WOS(3)] with BzCl yields 5 as the only isolable W thiolate species.  相似文献   

17.
A series of [3 x 3] Mn(II)(9), antiferromagnetically coupled, alkoxide-bridged, square grid complexes, derived from a group of "tritopic" dihydrazide ligands, is described. The outer ring of eight Mn(II) centers in the grids is isolated magnetically from the central Mn(II) ion, leading to an S = 0 ground state for the ring, and an S = 5/2 ground state overall in each case. Exchange in the Mn(II)(8) ring can be represented by a 1D chain exchange model. Rich electrochemistry displayed by these systems has led to the production of Mn(II)/Mn(III) mixed-oxidation-state grids by both electrochemical and chemical means. Structures are reported for [Mn(9)(2poap)(6)](C(2)N(3))(6).10H(2)O (1), [Mn(9)(2poap)(6)](2)[Mn(NCS)(4)(H(2)O)](2)(NCS)(8).10H(2)O (2), [Mn(9)(2poapz)(6)](NO(3))(6).14.5H(2)O (3), [Mn(9)(2popp)(6)](NO(3))(6).12H(2)O (4), [Mn(9)(2pomp)(6)](MnCl(4))(2)Cl(2).2CH(3)OH.7H(2)O (5), and [Mn(9)(Cl2poap)(6)](ClO(4))(9).7H(2)O (6). Compound 1 crystallized in the tetragonal system, space group P4(2)/n, with a = 21.568(1) A, c = 16.275(1) A, and Z = 2. Compound 2 crystallized in the triclinic system, space group P, with a = 25.043(1) A, b = 27.413(1) A, c = 27.538(2) A, alpha = 91.586(2) degrees, beta = 113.9200(9) degrees, gamma = 111.9470(8) degrees, and Z = 2. Compound 3 crystallized in the triclinic system, space group P, with a = 18.1578(12) A, b = 18.2887(12) A, c = 26.764(2) A, alpha = 105.7880(12) degrees, beta = 101.547(2) degrees, gamma = 91.1250(11) degrees, and Z = 2. Compound 4 crystallized in the tetragonal system, space group P4(1)2(1)2, with a = 20.279(1) A, c = 54.873(6) A, and Z = 4. Compound 5 crystallized in the tetragonal system, space group I, with a = 18.2700(2) A, c = 26.753(2) A, and Z = 2. Compound 6 crystallized in the triclinic system, space group P, with a = 19.044(2) A, b = 19.457(2) A, c = 23.978(3) A, alpha = 84.518(3) degrees, beta = 81.227(3) degrees, gamma = 60.954(2) degrees, and Z = 2. Preliminary surface studies on Au(111), with a Mn(II) grid complex derived from a sulfur-derivatized ligand, indicate monolayer coverage via gold-sulfur interactions, and the potential for information storage at high-density levels.  相似文献   

18.
Treatment of the hydrosulfido-bridged titanium-ruthenium heterobimetallic complex [Cp2Ti(mu2-SH)2RuCl(eta5-C5Me5)] (1; Cp = eta5-C5H5) with an excess of triethylamine followed by addition of [RuCl2(PPh3)3] and [[(cod)M]2(mu2-Cl)2] (M = Rh, Ir; cod = 1,5-cyclooctadiene) led to the formation of the TiRu2 and TiRuM mixed-metal sulfido clusters [(CpTi)[(eta5-C5Me5)Ru][Ru(PPh3)2](mu3-S)2(mu2-Cl)2] (3) and [(CpTi)[(eta5-C5Me5)Ru][M(cod)](mu3-S)2(mu2-Cl)] (M = Rh (4a), Ir (4b)), respectively. On the other hand, the reactions of 1 with [M(PPh3)4] (M = Pd, Pt) afforded the TiRuM trinuclear clusters [(CpTiCl)[(eta5-C5Me5)Ru][M(PPh3)2](mu3-S)(mu2-S)(mu2-H)] (M = Pd (5a), Pt (5b)) with an unprecedented M3(mu3-S)(mu2-S) core. The detailed structures of these triangular clusters 3-5 have been determined by X-ray crystallography. Crystal data: 3, triclinic, P1, a = 12.448(4) A, b = 12.773(4) A, c = 17.270(4) A, alpha = 100.16(2) degrees, beta = 99.93(2) degrees, gamma = 114.11(3) degrees, V = 2373(1) A(3), Z = 2; 4a, triclinic, P1, a = 7.714(2) A, b = 11.598(3) A, c = 14.802(4) A, alpha = 80.46(2) degrees, beta = 82.53(2) degrees, gamma = 71.47(2) degrees, V = 1234.0(6) A3, Z = 2; 4b, triclinic, P1, a = 7.729(1) A, b = 11.577(2) A, c = 14.766(3) A, alpha = 80.14(1) degrees, beta = 82.71(1) degrees, gamma = 71.55(1) degrees, V = 1231.1(4) A3, Z = 2; 5a, monoclinic, P2(1)/c, a = 11.259(4) A, b = 16.438(4) A, c = 26.092(5) A, beta = 102.23(3) degrees, V = 4719(2) A(3), Z = 4; 5b, monoclinic, P2(1)/n, a = 11.369(2) A, b = 16.207(3) A, c = 26.116(2) A, beta = 102.29(1) degrees, V = 4701(1) A3, Z = 4.  相似文献   

19.
Five platinum(II) 1,4,7-trithiacyclononane (ttcn) complexes with bidentate-substituted 2,2'-bipyridine ligands have been prepared and structurally characterized: [Pt(bpy)(ttcn)](PF6)2 (bpy = 2,2'-bipyridine), triclinic, P1, a = 10.2529(3) A, b = 10.7791(3) A, c = 10.7867(3) A, alpha = 83.886(1) degrees, beta = 87.565(1) degrees, gamma = 84.901(1), V = 1179.99(6) A3, Z = 2; [Pt(4,4'-dmbpy)(ttcn)](PF6)2 x CH3CN x H2O (4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine), triclinic, P1, a = 10.1895(3) A, b = 11.8566(4) A, c = 13.1004(4) A, alpha = 77.345(1) degrees, beta = 79.967(1) degrees, gamma = 72.341(1) degrees, V = 1461.56(8) A3, Z = 2; [Pt(5,5'-dmbpy)(ttcn)](PF6)2 (5,5'-dmbpy = 5,5'-dimethyl-2,2'-bipyridine), triclinic, P1, a = 10.6397(4) A, b = 10.8449(4) A, c = 11.2621(4) A, alpha = 90.035(1) degrees, beta = 98.061(1) degrees, gamma = 91.283(1) degrees, V = 1286.32(8) A3, Z = 2; [Pt(dbbpy)(ttcn)](PF6)2 x CH3NO2 (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), triclinic, P1, a = 11.5422(7) A, b = 11.6100(7) A, c = 13.6052(9) A, alpha = 85.902(1) degrees, beta = 89.675(1) degrees, gamma = 74.942(1) degrees, V = 1755.90(19) A3, Z = 2; and [Pt(dtfmbpy)(ttcn)](PF6)2 x CH3CN (dtfmbpy = 5,5'-di-trifluoromethyl-2,2'-bipyridine): monoclinic, P2(1)/c, a = 13.1187(9) A, b = 20.9031(15) A, c = 11.3815(8) A, beta = 105.789(2) degrees, V = 3003.3(4) A3, Z = 4. For each salt, the platinum(II) center of the cation is bonded to two nitrogen atoms of the chelating diimine and two sulfur atoms of the thioether macrocycle. The third sulfur atom of ttcn forms a long apical interaction with the metal center (2.84-2.97 A), resulting in a flattened square pyramid structure. An examination of these and 17 other structures of platinum(II) ttcn complexes reveals a correlation between the apical Pt...S distance and the donor properties of the ancillary ligands, suggesting a means for using variations in ligand electronic properties to tune molecular structure. The room-temperature absorption spectra in acetonitrile solution show a broad and comparatively low-energy MLCT band maximizing near approximately 390 nm for the bpy and dialkyl-substituted bipyridyl derivatives. The maximum is dramatically red-shifted to 460 nm in the spectrum of the dtfmbpy complex as a result of the electron-withdrawing properties of the -CF(3) groups. The 3:1 EtOH/MeOH 77 K glassy solution emission spectra exhibit low-energy emission bands (lambdamax, 570-645 nm), tentatively assigned as originating from a lowest, predominantly spin-forbidden MLCT excited state that is stabilized by apical Pt...S interactions.  相似文献   

20.
Treatment of HgCl(2) with 2-LiC(6)H(4)PPh(2) gives [Hg(2-C(6)H(4)PPh(2))(2)] (1), whose phosphorus atoms take up oxygen, sulfur, and borane to give the compounds [Hg[2-C(6)H(4)P(X)Ph(2)](2)] [ X = O (3), S (4), and BH(3) (5)], respectively. Compound 1 functions as a bidentate ligand of wide, variable bite angle that can span either cis or trans coordination sites in a planar complex. Representative complexes include [HgX(2) x 1] [X = Cl (6a), Br (6b)], cis-[PtX(2) x 1] [X = Cl (cis-7), Me (9), Ph (10)], and trans-[MX(2) x 1] [X = Cl, M = Pt (trans-7), Pd (8), Ni (11); X = NCS, M = Ni (13)] in which the central metal ions are in either tetrahedral (6a,b) or planar (7-11, 13) coordination. The trans disposition of 1 in complexes trans-7, 8, and 11 imposes close metal-mercury contacts [2.8339(7), 2.8797(8), and 2.756(8) A, respectively] that are suggestive of a donor-acceptor interaction, M --> Hg. Prolonged heating of 1 with [PtCl(2)(cod)] gives the binuclear cyclometalated complex [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)HgCl] (14) from which the salt [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)Hg]PF(6) (15) is derived by treatment with AgPF(6). In 14 and 15, the mu-C(6)H(4)PPh(2) groups adopt a head-to-tail arrangement, and the Pt-Hg separation in 14, 3.1335(5) A, is in the range expected for a weak metallophilic interaction. A similar arrangement of bridging groups is found in [Cl((n)Bu(3)P)Pd(mu-C(6)H(4)PPh(2))(2)HgCl] (16), which is formed by heating 1 with [PdCl(2)(P(n)()Bu(3))(2)]. Reaction of 1 with [Pd(dba)(2)] [dba = dibenzylideneacetone] at room temperature gives [Pd(1)(2)] (19) which, in air, forms a trigonal planar palladium(0) complex 20 containing bidentate 1 and the monodentate phosphine-phosphine oxide ligand [Hg(2-C(6)H(4)PPh(2))[2-C(6)H(4)P(O)Ph(2)]]. On heating, 19 eliminates Pd and Hg, and the C-C coupled product 2-Ph(2)PC(6)H(4)C(6)H(4)PPh(2)-2 (18) is formed by reductive elimination. In contrast, 1 reacts with platinum(0) complexes to give a bis(aryl)platinum(II) species formulated as [Pt(eta(1)-C-2-C(6)H(4)PPh(2))(eta(2)-2-C(6)H(4)PPh(2))(eta(1)-P-1)]. Crystal data are as follows. Compound 3: monoclinic, P2(1)/n, with a = 11.331(3) A, b = 9.381(2) A, c = 14.516 A, beta = 98.30(2) degrees, and Z = 2. Compound 6b x 2CH(2)Cl(2): triclinic, P macro 1, with a = 12.720(3) A, b = 13.154(3) A, c = 12.724(2) A, alpha = 92.01(2) degrees, beta = 109.19(2) degrees, gamma = 90.82(2) degrees, and Z = 2. Compound trans-7 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.805(3) A, b = 8.532(4) A, c = 23.076(2) A, and Z = 4. Compound 11 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.455(3) A, b = 8.496(5) A, c = 22.858(3) A, and Z = 4. Compound 14: monoclinic, P2(1)/c, with a = 13.150(3) A, b = 12.912(6) A, c = 26.724(2) A, beta = 94.09(1) degrees, and Z = 4. Compound 20 x C(6)H(5)CH(3).0.5CH(2)Cl(2): triclinic, P macro 1, with a = 13.199(1) A, b = 15.273(2) A, c = 17.850(1) A, alpha = 93.830(7), beta = 93.664(6), gamma = 104.378(7) degrees, and Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号