首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Birk T  Bendix J 《Inorganic chemistry》2003,42(23):7608-7615
The transfer of a terminal nitrido ligand from Mn(V)(N)(salen) to Cr(III) complexes is explored as a new preparative route to Cr(V) nitrido complexes. Reaction of Mn(V)(N)(salen) with labile CrCl(3)(THF)(3) in acetonitrile solution precipitates [Mn(Cl)(salen)].(CH(3)CN) and yields a solution containing a mixture of Cr(V) nitrido species with only labile auxiliary ligands. From this solution Cr(V) nitrido complexes with bidentate monoanionic ligands can be obtained in high yields. Five coordinate complexes of 8-hydroxoquinolinate (quin), 1,3-diphenylpropane-1,3-dionate (dbm), and pyrrolidinedithiocarbamate (pyr-dtc) have been structurally characterized: Cr(N)(quin)(2) (1) crystallizes as compact orange prisms in the triclinic space group P with cell parameters a = 7.2450(6) A, b = 8.1710(4) A, c = 13.1610(12) A, alpha = 80.519(6) degrees, beta = 75.721(7) degrees, gamma = 75.131(5) degrees, V = 725.47(10) A(3), Z = 2. Cr(N)(dbm)(2) (2) crystallizes as green rhombs in the orthorhombic space group Pbca with cell parameters a = 14.6940(6) A, b = 16.4570(18) A, c = 19.890(3) A, V = 4809.8(8) A(3), Z = 8. Cr(N)(pyr-dtc)(2) (3) crystallizes as orange prisms in the monoclinic space group P21/c with cell parameters a = 14.8592(14) A, b = 8.5575(5) A, c = 11.8267(12) A, beta = 106.528(7) degrees, V = 1441.7(2) A(3), Z = 4. Complexes 2 and 3 represent new coordination environments for first row transition metal nitrido complexes. The d-orbital energy splitting in these systems with relatively weak equatorial donors differs significantly from the pattern in vanadyl and the previously known first row transition metal nitrido complexes. The d(x)2(-)(y)2 orbital in 2 and 3 is lower in energy and well resolved from the M-N pi orbitals [d(zx),d(yz)].  相似文献   

2.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

3.
Two cyano-bridged tetranuclear complexes composed of Mn(III) salen (salen = N,N'-ethylene bis(salicylideneiminate)) and hexacyanometalate(III) (M = Fe, Cr) in a stoichiometry of 3:1 have been selectively synthesized using {NH2(n-C12H25)2}3[M(III)(CN)6] (M(III) = Fe, Cr) starting materials: [{Mn(salen)(EtOH)}3{M(CN)6}] (M = Fe, 1; Cr, 2). Compounds 1 and 2 are isostructural with a T-shaped structure, in which [M(CN)6]3- assumes a meridional-tridentate building block to bind three [Mn(salen)(EtOH)]+ units. The strong frequency dependence and observation of hysteresis on the field dependence of the magnetization indicate that 1 is a single-molecule magnet.  相似文献   

4.
A new general route to nitrido complexes of Cr(V) based on nitrogen-atom transfer from Mn(N)(salen) to labile CrCl3(THF)3 is presented. By this approach, the simplest nitrido complex of a first row transition metal, [Cr(N)Cl4]2-, has been synthesized and isolated. [[N(CH3)4]2[Cr(N)Cl4].H2O crystallizes in the cubic space group Fm-3m with disordered anions. Cr-N is 1.555(19) A, Cr-Cl is 2.2912(16) A, and N-Cr-Cl is 101.24(4) degrees . The orbital splitting scheme of [Cr(N)Cl4]2- is extreme with the dx2-y2 orbital 10 000 cm-1 lower in energy than the degenerate {dzx, dyz} set of orbitals destabilized by pi-bonding with the nitrido ligand. Hydrolysis of [Cr(N)Cl4]2 preserves the {CrN}2+ moiety.  相似文献   

5.
Yao MX  Wei ZY  Gu ZG  Zheng Q  Xu Y  Zuo JL 《Inorganic chemistry》2011,50(17):8636-8644
Using the tricyano precursor (Bu(4)N)[(Tp)Cr(CN)(3)] (Bu(4)N(+) = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate), a pentanuclear heterometallic cluster [(Tp)(2)Cr(2)(CN)(6)Cu(3)(Me(3)tacn)(3)][(Tp)Cr(CN)(3)](ClO(4))(3)·5H(2)O (1, Me(3)tacn = N,N',N'-trimethyl-1,4,7-triazacyclononane), three tetranuclear heterometallic clusters [(Tp)(2)Cr(2)(CN)(6)Cu(2)(L(OEt))(2)]·2.5CH(3)CN (2, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene), [(Tp)(2)Cr(2)(CN)(6)Mn(2)(L(OEt))(2)]·4H(2)O (3), and [(Tp)(2)Cr(2)(CN)(6)Mn(2)(phen)(4)](ClO(4))(2) (4, phen = phenanthroline), and a one-dimensional (1D) chain polymer [(Tp)(2)Cr(2)(CN)(6)Mn(bpy)](n) (5, bpy = 2,2'-bipyridine) have been synthesized and structurally characterized. Complex 1 shows a trigonal bipyramidal geometry in which [(Tp)Cr(CN)(3)](-) units occupy the apical positions and are linked through cyanide to [Cu(Me(3)tacn)](2+) units situated in the equatorial plane. Complexes 2-4 show similar square structures, where Cr(III) and M(II) (M = Cu(II) or Mn(II)) ions are alternatively located on the rectangle corners. Complex 5 consists of a 4,2-ribbon-like bimetallic chain. Ferromagnetic interactions between Cr(III) and Cu(II) ions bridged by cyanides are observed in complexes 1 and 2. Antiferromagnetic interactions are presented between Cr(III) and Mn(II) ions bridged by cyanides in complexes 3-5. Complex 5 shows metamagnetic behavior with a critical field of about 22.5 kOe at 1.8 K.  相似文献   

6.
The first use of [Cr(N)Cl4]2- as a starting material in chromium(v) nitrido chemistry is demonstrated in simple, high yield, metathesis reactions with the pseudohalogens SCN- and N3- yielding five-coordinate, labile complexes: [Cr(N)(NCS)4]2- and [Cr(N)(N3)4]2-, which have been crystallized and characterized by single-crystal X-ray diffraction. Reaction of [Cr(N)(NCS)4]2- with 1,10-phenanthroline furnishes six-coordinate [Cr(N)(NCS)3(phen)]- wherein phenanthroline coordinates to the position trans to the nitrido ligand. The trans influence of the nitrido ligand leads to a bond length difference of 0.223 A between the axial and equatorial ligators from the phenanthroline ligand. The absorption band with lowest energy in these pseudo-linear complexes is assigned as the electric dipole forbidden transition d(xy) --> d(x-y) based on intensities and its variation with the nature of the equatorial ligators. This absorption provides the spectrochemical series for the equatorial ligands, which is found to be numerically almost identical to that determined for chromium(III). DFT calculations reproduce the observed structures and corroborate the ligand field picture of the electronic structure of these complexes.  相似文献   

7.
The kinetic inertness of the hexaaquachromium(III) (kH2O=2.4x10(-6) s(-1)) has led to challenges with respect to incorporating CrIII ions into Prussian blue-type materials; however, hexakis(acetonitrile)chromium(III) was shown to be substantially more labile (approximately 10(4) times) and enables a new synthetic route for the synthesis of these materials via nonaqueous solvents. The synthesis, spectroscopic, and physical properties of Cr[M(CN)6] (M=V, Cr, Mn, Fe) Prussian blue analogues synthesized from [CrIII(NCMe)6]3+ and the corresponding [MIII(CN)6]3- are described. All these compounds {(NEt4)0.02CrIII[VIII(CN)6]0.98(BF4)(0.08).0.10MeCN (1), CrIII[CrIII(CN)6].0.16MeCN (2), CrIII[MnIII(CN)6].0.10MeCN (3), and (NEt4)0.04CrIII0.64CrIV0.40[FeII(CN)6]0.40[FeIII(CN)6]0.60(BF4)(0.16).1.02MeCN (4)} are ferrimagnets exhibiting cluster-glass behavior. Strong antiferromagnetic coupling was observed for M=V, Cr, and Mn with Weiss constants (theta) ranging from -132 to -524 K; and in 2, where the strongest coupling is observed (theta=-524 K), the highest Tc (110 K) value was observed. Weak antiferromagnetic coupling was observed for M=Fe (theta=-12 K) leading to the lowest Tc (3 K) value in this series. Weak coupling and the low Tc value observed in 4 were additionally contributed by the presence of both [FeII(CN)6]4- and [FeIII(CN)6]3- as confirmed by 57Fe-M?ssbauer spectroscopy.  相似文献   

8.
Zhou HB  Wang J  Wang HS  Xu YL  Song XJ  Song Y  You XZ 《Inorganic chemistry》2011,50(15):6868-6877
On the basis of high-spin metal-cyanide clusters of Mn(III)(6)M(III) (M = Cr, Fe, Co), three one-dimensional (1D) chain complexes, [Mn(salen)](6)[Cr(CN)(6)](2)·6CH(3)OH·H(2)O (1), [Mn(5-CH(3))salen)](6)[Fe(CN)(6)](2)·2CH(3)CN·10H(2)O (2), and [Mn(5-CH(3))salen)](6)[Co(CN)(6)](2)·2CH(3)CN·10H(2)O (3) [salen = N,N'-ethylenebis(salicylideneiminato) dianion], have been synthesized and characterized structurally as well as magnetically. Complexes 2 and 3 are isomorphic but slightly different from complex 1. All three complexes contain a 1D chain structure which is comprised of alternating high-spin metal-cyanide clusters of [Mn(6)M](3+) and a bridging group [M(CN)(6)](3-) in the trans mode. Furthermore, the three complexes all exhibit extended 3D supramolecular networks originating from short intermolecular contacts. Magnetic investigation indicates that the coupling mechanisms are intrachain antiferromagnetic interactions for 1 and ferromagnetic interactions for 2, respectively. Complex 3 is a magnetic dilute system due to the diamagnetic nature of Co(III). Further magnetic investigations show that complexes 1 and 2 are dominated by the 3D antiferromagnetic ordering with T(N) = 7.2 K for 1 and 9.5 K for 2. It is worth noting that the weak frequency-dependent phenomenon of AC susceptibilities was observed in the low-temperature region in both 1 and 2, suggesting the presence of slow magnetic relaxations.  相似文献   

9.
Yang C  Wang QL  Qi J  Ma Y  Yan SP  Yang GM  Cheng P  Liao DZ 《Inorganic chemistry》2011,50(9):4006-4015
Two novel complexes, [{Mn(salen)}(2){Mn(salen)(CH(3)OH)}{Cr(CN)(6)}](n)·2nCH(3)CN·nCH(3)OH (1) and [Mn(5-Clsalmen)(CH(3)OH)(H(2)O)](2n)[{Mn(5-Clsalmen)(μ-CN)}Cr(CN)(5)](n)·5.5nH(2)O (2) (salen(2-) = N,N'-ethylene-bis(salicylideneiminato) dianion; 5-Clsalmen(2-) = N,N'-(1-methylethylene)-bis(5-chlorosalicylideneiminato) dianion), were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 consists of one-dimensional (1D) alternating chains formed by the [{Cr(CN)(6)}{Mn(salen)}(4){Mn(salen)(CH(3)OH)}(2)](3+) heptanuclear cations and [Cr(CN)(6)](3-) anions. While in complex 2, the hexacyanochromate(III) anion acts as a bis-monodentate ligand through two trans-cyano groups to bridge two [Mn(5-Clsalmen)](+) cations to form a straight chain. The magnetic analysis indicates that complex 1 shows three-dimensional (3D) antiferromagnetic ordering with the Ne?el temperature of 5.0 K, and it is a metamagnet displaying antiferromagnetic to ferromagnetic transition at a critical field of about 2.6 kOe at 2 K. Complex 2 behaves as a molecular magnet with Tc = 3.0 K.  相似文献   

10.
The partitioning behavior of pentacyanonitrosilmetallate complexes[Fe(CN) 5NO] (2-), [Mn(CN) 5NO] (3-), and [Cr(CN) 5NO] (3-)has been studied in aqueous two-phase systems (ATPS) formed by adding poly(ethylene oxide) (PEO; 4000 g mol (-1)) to an aqueous salt solution (Li 2SO 4, Na 2SO 4, CuSO 4, or ZnSO 4). The complexes partition coefficients ( K complex) in each of these ATPS have been determined as a function of increasing tie-line length (TLL) and temperature. Unlike the partition behavior of most ions, [Fe(CN) 5NO] (2-) and [Mn(CN) 5NO] (3-) anions are concentrated in the polymer-rich phase with K values depending on the nature of the central atom as follows: K [ F e ( C N ) 5 N O ] 2 - > K [ M n ( C N ) 5 N O ] 3 - > K [ C r ( C N ) 5 N O ] 3 - . The effect of ATPS salts in the complex partitioning behavior has also been verified following the order Li 2SO 4 > Na 2SO 4 > ZnSO 4. Thermodynamic analysis revealed that the presence of anions in the polymer-rich phase is caused by an EO-[M(CN) 5NO] ( x- ) (M = Fe, Mn, or Cr) enthalpic interaction. However, when this enthalpic interaction is weak, as in the case of the [Cr(CN) 5NO] (3-) anion ( K [ C r ( C N ) 5 N O ] 3 - < 1), entropic driving forces dominate the transfer process, then causing the anions to concentrate in the salt-rich phase.  相似文献   

11.
The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and M?ssbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and M?ssbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.  相似文献   

12.
Photolysis of a series of octahedral monoazido complexes of the type [LM(III)(didentate ligand)(N(3))](n)(+)X(n) of vanadium(III), chromium(III), and manganese(III) in the solid state or in solution yields quantitatively the corresponding six-coordinate nitrido complexes [LM(V)(didentate ligand)(N)](n)(+)X(n) and 1 equiv of dinitrogen. L represents the macrocycle 1,4,7-triazacyclononane or its N-methylated derivative (L'), the didentate ligands are pentane-2,4-dionate (acac), 2,2,6,6-tetramethylheptane-3,5-dionate (tacac), picolinate (pic), phenanthroline (phen), and oxalate (ox), and X(-) represents perchlorate or hexafluorophosphate. The following nitrido complexes were prepared: [LV(V)(N)(acac)](ClO(4)) (6), [LCr(V)(N)(acac)](ClO(4)) (13), [LCr(V)(N)(tacac)](ClO(4)) (14), [LCr(V)(N)(pic)](ClO(4)) (15), [LCr(V)(N)(phen)](ClO(4))(2) (16), [LCr(V)(N)(ox)] (19), [L'Mn(V)(N)(acac)]PF(6) (21). Photolysis of [LCr(III)(N(3))(ox)] (17) in the solid state produces the &mgr;-nitrido-bridged mixed-valent species [L(2)Cr(2)(ox)(2)(&mgr;-N)](N(3)) (18). The structures of the precursor complex [L'Mn(acac)(N(3))]BPh(4) (20), of 13, and of [L'Mn(V)(N)(acac)]BPh(4) (21) have been determined by X-ray crystallography. Complex 13 crystallizes in the orthorhombic space group Pnma, with cell constants a = 27.187(5) ?, b = 9.228(2) ?, c = 7.070(1) ?, V = 1773.7(6) ?(3), and Z = 4; complex 20 crystallizes in the triclinic space group P&onemacr; with a = 14.769(5) ?, b = 16.83(1) ?, c = 16.96(1) ?, alpha = 108.19(5) degrees, beta = 105.06(4) degrees, gamma = 99.78(4) degrees, V = 3719(2) ?(3), and Z = 4; and complex 21 crystallizes in the monoclinic space group P2(1)/n with a = 10.443(3) ?, b = 16.035(4) ?, c = 21.463(5) ?, beta = 95.76(1) degrees, V = 3575.9(14) ?(3), and Z = 4. The Cr(V)&tbd1;N and Mn(V)&tbd1;N distances are short at 1.575(9) and 1.518(4) ?, respectively, and indicate a metal-to-nitrogen triple bond.  相似文献   

13.
Yao MX  Zheng Q  Cai XM  Li YZ  Song Y  Zuo JL 《Inorganic chemistry》2012,51(4):2140-2149
By the reactions of Mn(III) Schiff-base complexes with the tricyanometalate building block, [(Tp)Cr(CN)(3)](-) (Tp = Tris(pyrazolyl) hydroborate), two couples of enantiomerically pure chiral cyano-bridged heterobimetallic one-dimensional (1D) chain complexes, [Mn((R,R)-Salcy)Cr(Tp)(CN)(3)·1/4H(2)O·1/2CH(2)Cl(2)](n) (1) and [Mn((S,S)-Salcy)Cr(Tp)(CN)(3)·1/4H(2)O·1/2CH(2)Cl(2)](n) (2) (Salcy = N,N'-(1,2-cyclohexanediylethylene)bis(salicylideneiminato) dianion), [Mn((R,R)-Salphen)Cr(Tp)(CN)(3)](n) (3) and [Mn((S,S)-Salphen)Cr(Tp)(CN)(3)](n) (4) (Salphen = N,N'-1,2-diphenylethylene-bis(salicylideneiminato) dianion), have been successfully synthesized. Circular dichroism (CD) spectra confirm the enantiomeric nature of the optically active complexes. Structural analyses reveal the formation of neutral cyano-bridged zigzag single chains in 1 and 2, and neutral cyano-bridged zigzag double chains in 3 and 4. Magnetic studies show that antiferromagnetic couplings are operative between Cr(III) and Mn(III) centers bridged by cyanide. Complexes 1 and 2 are the rare examples of chiral ferrimagnets; while complexes 3 and 4 exhibit a coexistence of chirality and spin-glass behavior in a 1D chain.  相似文献   

14.
Zhang YZ  Gao S  Wang ZM  Su G  Sun HL  Pan F 《Inorganic chemistry》2005,44(13):4534-4545
Six heterometallic compounds based on the building block [Cr(bpy)(CN)4]- (bpy = 2,2'-bipyridine) with secondary and/or tertiary coligands as modulators, {Mn(H2O)2[Cr(bpy)(CN)4]2}n (1), {Mn(bpy)(H2O)[Cr(bpy)(CN)4]2 x H2O}n (2), [Mn(bpy)2][Cr(bpy)(CN)4]2 x 5H2O (3), {[Mn(dca)(bpy)(H2O)][Cr(bpy)(CN)4] x H2O}n (4) (dca = N(CN)2(-)), {Mn(N3)(CH3OH)[Cr(bpy)(CN)4] x 2H2O}n (5), and {Mn(bpy)(N3)(H2O)[Cr(bpy)(CN)4] x H2O}2 (6), have been prepared and characterized structurally and magnetically. X-ray crystallography reveals that the compounds 1, 2, 4, and 5 consist of one-dimensional (1D) chains with different structures: a 4,2-ribbon-like chain, a branched zigzag chain, a 2,2-CC zigzag chain, and a 3,3-ladder-like chain, respectively. It also reveals that compound 3 has a trinuclear [MnCr2] structure, and compound 6 has a tetranuclear [Mn2Cr2] square structure. Magnetic studies show antiferromagnetic interaction between Cr(III) and Mn(II) ions in all compounds. All of the chain compounds exhibit metamagnetic behaviors with different critical temperatures (Tc) and critical fields (Hc; at 1.8 K): 3.2 K and 3.0 kOe for 1; 2.3 K and 4.0 kOe for 2; 2.1 K and 1.0 kOe for 4; and 4.7 K and 5.0 kOe for 5, respectively. The noncentrosymmetric compound 2 is also a weak ferromagnet at low temperature because of spin canting. The magnetic analyses reveal Cr-Mn intermetallic magnetic exchange constants, J, of -4.7 to -9.4 cm(-1) (H = -JS(Cr) x S(Mn)). It is observed that the antiferromagnetic interaction through the Mn-N-C-Cr bridge increases as the Mn-N-C angle (theta) decreases to the range of 155-180 degrees, obeying an empirical relationship: J = -40 + 0.2theta. This result suggests that the best overlap between t(2g) (high-spin Mn(II)) and t(2g) (low-spin Cr(III)) occurs at an angle of approximately 155 degrees.  相似文献   

15.
Two W(V)-Mn(III) bimetallic compounds, [Mn(Cl-salmen)(H(2)O)2]{[Mn(5-Clsalmen)(H(2)O)]2[W(CN)8].2H(2)O (1.2H(2)O) [5-Clsalmen = N,N'-(1-methylethylene)bis(5-chlorosalicylideneiminato) dianion], which contains trinuclear Mn(2)W and isolated Mn(III) moieties, and [Mn(3-MeOsalcy)(H(2)O)2]3[W(CN)(8)].2H(2)O (2.2H(2)O) [3-MeOsalcy = N,N'-(trans-1,2-cyclohexanediylethylene)bis(3-methoxysalicylideneiminato) dianion] molecules were prepared in redox processes and characterized using X-ray analysis and magnetic measurements. Compound 1 is composed of the {[Mn(5-Clsalmen)(H(2)O)]2[W(CN)8]}- trimer, in which two CN groups among eight in [W(CN)8](3-) bridge W(5+) and two Mn(3+) ions and the remaining CN ligands are hydrogen-bonded to water molecules or unbound, and the [Mn(Cl-salmen)(H(2)O)2]+ cation. Subsequently, two water molecules of the isolated cation are subject to hydrogen bonds. For 2, there are no covalent bonds among the subunits and six serial stacks of [Mn(3-MeOsalcy)(H(2)O)2]+ units are all hydrogen-bonded. The many hydrogen bonds found in both complexes eventually lead to three-dimensional networks. The magnetic studies for 1 reveal that antiferromagnetic interactions (J = -5.4 cm(-1)) between W(V) and Mn(III) centers within the trimer are transmitted via the bridging CN groups. Intermolecular antiferromagnetic couplings (zJ' = -0.2 cm(-1)) are also observed. The static and dynamic magnetic data of 1 demonstrate the existence of a field-induced spin-flop transition occurring among the clusters and monomeric molecules.  相似文献   

16.
The homoleptic complexes [Ph(4)P](2)[Co[N(CN)(2)](4)] and [Ph(4)P][M[N(CN)(2)](3)] [M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing [M[N(CN)(2)](4)](2-) form 1-D chains, which are bridged via a common dicyanamide ligand in [M[N(CN)(2)](3)](-) to form a 2-D structure. The five-atom [NCNCN](-) bridging ligands lead to weak magnetic coupling along a chain. The six [NCNCN](-) ligands lead to a (4)T(1g) ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.  相似文献   

17.
Three Mn(III)-M(III) (M = Cr and Fe) dinuclear complexes have been obtained by assembling [Mn(III)(SB)(H(2)O)](+) and [M(III)(AA)(CN)(4)](-) ions, where SB is the dianion of the Schiff-base resulting from the condensation of 3-methoxysalicylaldehyde with ethylenediamine (3-MeOsalen(2-)) or 1,2-cyclohexanediamine (3-MeOsalcyen(2-)): [Mn(3-MeOsalen)(H(2)O)(μ-NC)Cr(bipy)(CN)(3)]·2H(2)O (1), [Mn(3-MeOsalen)(H(2)O)(μ-NC)Cr(ampy)(CN)(3)][Mn(3-MeOsalen)(H(2)O)(2)]ClO(4)·2H(2)O (2) and [Mn(3-MeOsalcyen)(H(2)O)(μ-NC)Fe(bpym)(CN)(3)]·3H(2)O (3) (bipy = 2,2'-bipyridine, ampy = 2-aminomethylpyridine and bpym = 2,2'-bipyrimidine). The [M(AA)(CN)(4)](-) unit in 1-3 acts as a monodentate ligand towards the manganese(III) ion through one of its four cyanide groups. The manganese(III) ion in 1-3 exhibits an elongated octahedral stereochemistry with the tetradentate SB building the equatorial plane and a water molecule and a cyanide-nitrogen atom filling the axial positions. Remarkably, the neutral mononuclear complex [Mn(3-MeOsalen)(H(2)O)(2)]ClO(4) co-crystallizes with the heterobimetallic unit in 2. The values of the Mn(III)-M(III) distance across the bridging cyanide are 5.228 (1), 5.505 (2) and 5.265 ? (3). The packing of the neutral heterobimetallic units in the crystal is governed by the self-complementarity of the [Mn(SB)(H(2)O)](+) moieties, which interact each other through hydrogen bonds established between the aqua ligand from one fragment with the set of phenolate- and methoxy-oxygens from the adjacent one. The magnetic properties of the three complexes have been investigated in the temperature range 1.9-300 K. Weak antiferromagnetic interactions between the Mn(III) and M(III) ions across the cyanido bridge were found: J(MnM) = -5.6 (1), -0.63 (2) and -2.4 cm(-1) (3) the Hamiltonian being defined as H = -JS(Mn)·S(M). Theoretical calculations based on density functional theory (DFT) have been used to substantiate both the nature and magnitude of the exchange interactions observed and also to analyze the dependence of the magnetic coupling on the structural parameters within the Mn(III)-N-C-M(III) motif in 1-3.  相似文献   

18.
The reaction of [Fe(III)L(CN)(3)](-) (L being bpca = bis(2-pyridylcarbonyl)amidate, pcq = 8-(pyridine-2-carboxamido)quinoline) or [Fe(III)(bpb)(CN)(2)](-) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate) ferric complexes with Mn(III) salen type complexes afforded seven new bimetallic cyanido-bridged Mn(III)-Fe(III) systems: [Fe(pcq)(CN)(3)Mn(saltmen)(CH(3)OH)]·CH(3)OH (1), [Fe(bpca)(CN)(3)Mn(3-MeO-salen)(OH(2))]·CH(3)OH·H(2)O (2), [Fe(bpca)(CN)(3)Mn(salpen)] (3), [Fe(bpca)(CN)(3)Mn(saltmen)] (4), [Fe(bpca)(CN)(3)Mn(5-Me-saltmen)]·2CHCl(3) (5), [Fe(pcq)(CN)(3)Mn(5-Me-saltmen)]·2CH(3)OH·0.75H(2)O (6), and [Fe(bpb)(CN)(2)Mn(saltmen)]·2CH(3)OH (7) (with saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminato) dianion, salpen(2-) = N,N'-propylenebis(salicylideneiminato) dianion, salen(2-) = N,N'-ethylenebis(salicylideneiminato) dianion). Single crystal X-ray diffraction studies were carried out for all these compounds indicating that compounds 1 and 2 are discrete dinuclear [Fe(III)-CN-Mn(III)] complexes while systems 3-7 are heterometallic chains with {-NC-Fe(III)-CN-Mn(III)} repeating units. These chains are connected through π-π and short contact interactions to form extended supramolecular networks. Investigation of the magnetic properties revealed the occurrence of antiferromagnetic Mn(III)···Fe(III) interactions in 1-4 while ferromagnetic Mn(III)···Fe(III) interactions were detected in 5-7. The nature of these Mn(III)···Fe(III) magnetic interactions mediated by a CN bridge appeared to be dependent on the Schiff base substituent. The packing is also strongly affected by the nature of the substituent and the presence of solvent molecules, resulting in additional antiferromagnetic interdinuclear/interchain interactions. Thus the crystal packing and the supramolecular interactions induce different magnetic properties for these systems. The dinuclear complexes 1 and 2, which possess a paramagnetic S(T) = 3/2 ground state, interact antiferromagnetically in their crystal packing. At high temperature, the complexes 3-7 exhibit a one-dimensional magnetic behavior, but at low temperature their magnetic properties are modulated by the supramolecular arrangement: a three-dimensional antiferromagnetic order with a metamagnetic behavior is observed for 3, 4, and 7, and Single-Chain Magnet properties are detected for 5 and 6.  相似文献   

19.
Reactions between the complex [MnII(L)]2+, where L is a N3O2 macrocyclic ligand, and different cyanometalate precursors such as [M(CN)n]m- (M(III) = Cr, Fe; M(II) = Fe, Ni, Pd, Pt) lead to cyano-bridged molecular assemblies exhibiting a variety of structural topologies. The reaction between [MnII(L)]2+ and [FeII(CN)6]4- forms a trinuclear complex with formula [(MnII(L)(H2O))2(FeII(micro-CN)2(CN)4)] x 2MeOH x 10H2O (1) which crystallizes in the triclinic space group P1. The reaction between [MnII(L)]2+ and [M(II)(CN)4]2-, where M(II) = Ni (2), Pd (3), Pt (4), gives rise to three isostructural linear chain compounds with stoichiometry [(MnII(L))(M(II)(micro-CN)2(CN)2)]n and which crystallize in the monoclinic space group C2/c. The self-assembly between [MnII(L)]2+ with [M(III)(CN)6]3-, where M(III) = Cr (5), Fe (6, 7, 8), forms three types of compounds. Compounds 5 and 6 are isostructural (monoclinic, space group P2(1)/n), and the structures comprise anionic linear chains [(MnII(L))(M(III)(micro-CN)2(CN)4)]n(n-) with cationic trinuclear complexes [(MnII(L)(H2O))2(M(III)(micro-CN)2(CN)4)]+ as counterions. Using an excess of K3[FeIII(CN)6], an analogous compound to 6 but with K+ as counterion is obtained (7), which crystallizes in the triclinic space group P1. Compound 8 consists of 2-D layers with formula [(MnII(L))3(FeIII(micro-CN)4(CN)2)(FeIII(micro-CN)2(CN)4)]n x 2nMeOH; it crystallizes in the monoclinic space group P2(1)/n. The magnetic properties were investigated for all samples. In particular, compound 5, which shows antiferromagnetic exchange interactions between Mn(II) and Cr(III) ions through cyanide bridging ligands, has been studied in detail; the magnetic exchange parameter amounts to J = -7.5(7) cm(-1). Compound 8 shows a magnetically ordered phase below 6.4 K which is confirmed by M?ssbauer spectroscopy; two hyperfine split spectra were observed below Tc from which IJI values of 2.1 and 1.6 cm(-1) could be deduced.  相似文献   

20.
A series of molybdenum and tungsten nitrido, [M(N)(X)(diphos)2], and imido complexes, [M(NH)(X)(diphos)2)]Y, (M = Mo, W) with diphosphine coligands (diphos = dppe/depe), various trans ligands (X = N3-, Cl-, NCCH3) and different counterions (Y-= Cl-, BPh4-) is investigated. These compounds are studied by infrared and Raman spectroscopies; they are also studied with isotope-substitution and optical-absorption, as well as emission, spectroscopies. In the nitrido complexes with trans-azido and -chloro coligands, the metal-N stretch is found at about 980 cm(-1); upon protonation, it is lowered to about 920 cm(-1). The 1A1 --> 1E (n --> pi) electronic transition is observed for [Mo(N)(N3)(depe)2] at 398 nm and shows a progression in the metal-N stretch of 810 cm(-1). The corresponding 3E --> 1A (pi --> n) emission band is observed at 542 nm, exhibiting a progression in the metal-N stretch of 980 cm(-1). In the imido system [Mo(NH)(N3)(depe)2]BPh4, the n --> pi transition is shifted to lower energy (518 nm) and markedly decreases in intensity. In the trans-nitrile complex [Mo(N)(NCCH3)(dppe)2]BPh4, the metal-N(nitrido) stretching frequency increases to 1016 cm(-1). The n --> pi transition now is found at 450 nm, shifting to 525 nm upon protonation. Most importantly, the reduction of this nitrido trans-nitrile complex is drastically facilitated compared to its counterparts with anionic trans-ligands (Epred = -1.5 V vs Fc+/Fc). On the other hand, the basicity of the nitrido group is decreased (pKa{[Mo(NH)(NCCH3)(dppe)2](BPh4)2} = 5). The implications of these findings with respect to the Chatt cycle are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号