首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hayton TW  Wu G 《Inorganic chemistry》2008,47(16):7415-7423
The reaction of [UO 2(Ar 2nacnac)Cl] 2 [Ar 2nacnac = (2,6- (i)Pr 2C 6H 3)NC(Me)CHC(Me)N(2,6- (i)Pr 2C 6H 3)] with Na(RC(O)CHC(O)R) (R = Me, Ph, CF 3) in tetrahydrofuran results in the formation of UO 2(Ar 2nacnac)(RC(O)CHC(O)R) (R = Me, 1; Ph, 2; CF 3, 3), which can be isolated in moderate yields. The structures of 1 and 2 have been confirmed by X-ray crystallography, while the solution redox properties of 1- 3 have been measured by cyclic voltammetry. Complexes 1- 3 exhibit reduction features at -1.82, -1.59, and -1.39 V (vs Fc/Fc (+)), respectively, at a scan rate of 100 mV.s (-1). The decrease in the reduction potential follows the electron-withdrawing ability of each beta-diketonate ligand. Chemical reduction of 1 and 2 with Cp* 2Co in toluene yields [Cp* 2Co][UO 2(Ar 2nacnac)(RC(O)CHC(O)R)] (R = Me, 4; Ph, 5), while reduction of 3 with Cp 2Co provides [Cp 2Co][UO 2(Ar 2nacnac)(CF 3C(O)CHC(O)CF 3)] ( 6). Complexes 4- 6 have been fully characterized, while the solid-state molecular structure of 5 has also been determined. In contrast to the clean reduction that occurs with Cp* 2Co, reduction of 1 with sodium ribbon, followed by cation exchange with [NEt 4]Cl, produces [NEt 4][UO 2(Ar 2nacnac)(H 2CC(O)CH(O)CMe)] ( 7) in modest yield. This product results from the formal loss of H (*) from a methyl group of the acetylacetonate ligand. Alternately, complex 7 can be synthesized by deprotonation of 1 with NaNTMS 2 in good yield.  相似文献   

2.
New cationic diruthenium complexes of the type [(arene)(2)Ru(2)(SPh)(3)](+), arene being C(6)H(6), p-(i)PrC(6)H(4)Me, C(6)Me(6), C(6)H(5)R, where R = (CH(2))(n)OC(O)C(6)H(4)-p-O(CH(2))(6)CH(3) or (CH(2))(n)OC(O)CH=CHC(6)H(4)-p-OCH(3) and n = 2 or 4, are obtained from the reaction of the corresponding precursor [(arene)RuCl(2)](2) and thiophenol and isolated as their chloride salts. The complexes have been fully characterised by spectroscopic methods and the solid state structure of [(C(6)H(6))(2)Ru(2)(SPh)(3)](+), crystallised as the hexafluorophosphate salt, has been established by single crystal X-ray diffraction. The complexes are highly cytotoxic against human ovarian cancer cells (cell lines A2780 and A2780cisR), with the IC(50) values being in the submicromolar range. In comparison the analogous trishydroxythiophenolato compounds [(arene)(2)Ru(2)(S-p-C(6)H(4)OH)(3)]Cl (IC(50) values around 100 μM) are much less cytotoxic. Thus, it would appear that the increased antiproliferative effect of the arene ruthenium complexes is due to the presence of the phenyl or toluyl substituents at the three thiolato bridges.  相似文献   

3.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

4.
Synthetic routes to methyl(aryl)alkynylpalladium(iv) motifs are presented, together with studies of selectivity in carbon-carbon coupling by reductive elimination from Pd(IV) centres. The iodonium reagents IPh(C[triple bond, length as m-dash]CR)(OTf) (R = SiMe(3), Bu(t), OTf = O(3)SCF(3)) oxidise Pd(II)Me(p-Tol)(L(2)) (1-3) [L(2) = 1,2-bis(dimethylphosphino)ethane (dmpe) (1), 2,2'-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3)] in acetone-d(6) or toluene-d(9) at -80 °C to form complexes Pd(IV)(OTf)Me(p-Tol)(C[triple bond, length as m-dash]CR)(L(2)) [R = SiMe(3), L(2) = dmpe (4), bpy (5), phen (6); R = Bu(t), L(2) = dmpe (7), bpy (8), phen (9)] which reductively eliminate predominantly (>90%) p-Tol-C[triple bond, length as m-dash]CR above ~-50 °C. NMR spectra show that isomeric mixtures are present for the Pd(IV) complexes: three for dmpe complexes (4, 7), and two for bpy and phen complexes (5, 6, 8, 9), with reversible reduction in the number of isomers to two occurring between -80 °C and -60 °C observed for the dmpe complex 4 in toluene-d(8). Kinetic data for reductive elimination from Pd(IV)(OTf)Me(p-Tol)(C[triple bond, length as m-dash]CSiMe(3))(dmpe) (4) yield similar activation parameters in acetone-d(6) (66 ± 2 kJ mol(-1), ΔH(?) 64 ± 2 kJ mol(-1), ΔS(?)-67 ± 2 J K(-1) mol(-1)) and toluene-d(8) (E(a) 68 ± 3 kJ mol(-1), ΔH(?) 66 ± 3 kJ mol(-1), ΔS(?)-74 ± 3 J K(-1) mol(-1)). The reaction rate in acetone-d(6) is unaffected by addition of sodium triflate, indicative of reductive elimination without prior dissociation of triflate. DFT computational studies at the B97-D level show that the energy difference between the three isomers of 4 is small (12.6 kJ mol(-1)), and is similar to the energy difference encompassing the six potential transition state structures from these isomers leading to three feasible C-C coupling products (13.0 kJ mol(-1)). The calculations are supportive of reductive elimination occurring directly from two of the three NMR observed isomers of 4, involving lower activation energies to form p-TolC[triple bond, length as m-dash]CSiMe(3) and earlier transition states than for other products, and involving coupling of carbon atoms with higher s character of σ-bonds (sp(2) for p-Tol, sp for C[triple bond, length as m-dash]C-SiMe(3)) to form the product with the strongest C-C bond energy of the potential coupling products. Reductive elimination occurs predominantly from the isomer with Me(3)SiC[triple bond, length as m-dash]C trans to OTf. Crystal structure analyses are presented for Pd(II)Me(p-Tol)(dmpe) (1), Pd(II)Me(p-Tol)(bpy) (2), and the acetonyl complex Pd(II)Me(CH(2)COMe)(bpy) (11).  相似文献   

5.
The symmetric d(5) trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)] (R = Me, 1 a; Et, 1 b; Ph, 1 c) (dmpe = 1,2-bis(dimethylphosphino)ethane) have been prepared by the reaction of [Mn(dmpe)(2)Br(2)] with two equivalents of the corresponding acetylide LiC triple bond CSiR(3). The reactions of species 1 with [Cp(2)Fe][PF(6)] yield the corresponding d(4) complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)][PF(6)] (R = Me, 2 a; Et, 2 b; Ph, 2 c). These complexes react with NBu(4)F (TBAF) at -10 degrees C to give the desilylated parent acetylide compound [Mn(dmpe)(2)(C triple bond CH)(2)][PF(6)] (6), which is stable only in solution at below 0 degrees C. The asymmetrically substituted trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(C triple bond CH)][PF(6)] (R = Me, 7 a; Et, 7 b) related to 6 have been prepared by the reaction of the vinylidene compounds [Mn(dmpe)(2)(C triple bond CSiR(3))(C=CH(2))] (R = Me, 5 a; Et, 5 b) with two equivalents of [Cp(2)Fe][PF(6)] and one equivalent of quinuclidine. The conversion of [Mn(C(5)H(4)Me)(dmpe)I] with Me(3)SiC triple bond CSnMe(3) and dmpe afforded the trans-iodide-alkynyl d(5) complex [Mn(dmpe)(2)(C triple bond CSiMe(3))I] (9). Complex 9 proved to be unstable with regard to ligand disproportionation reactions and could therefore not be oxidized to a unique Mn(III) product, which prevented its further use in acetylide coupling reactions. Compounds 2 react at room temperature with one equivalent of TBAF to form the mixed-valent species [[Mn(dmpe)(2)(C triple bond CH)](2)(micro-C(4))][PF(6)] (11) by C-C coupling of [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] radicals generated by deprotonation of 6. In a similar way, the mixed-valent complex [[Mn(dmpe)(2)(C triple bond CSiMe(3))](2)(micro-C(4))][PF(6)] [12](+) is obtained by the reaction of 7 a with one equivalent of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The relatively long-lived radical intermediate [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] could be trapped as the Mn(I) complex [Mn(dmpe)(2)(C triple bond CH)(triple bond C-CO(2))] (14) by addition of an excess of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to the reaction mixtures of species 2 and TBAF. The neutral dinuclear Mn(II)/Mn(II) compounds [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))] (R = H, 11; R = SiMe(3), 12) are produced by the reduction of [11](+) and [12](+), respectively, with [FeCp(C(6)Me(6))]. [11](+) and [12](+) can also be oxidized with [Cp(2)Fe][PF(6)] to produce the dicationic Mn(III)/Mn(III) species [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))][PF(6)](2) (R = H, [11](2+); R = SiMe(3), [12](2+)). Both redox processes are fully reversible. The dinuclear compounds have been characterized by NMR, IR, UV/Vis, and Raman spectroscopies, CV, and magnetic susceptibilities, as well as elemental analyses. X-ray diffraction studies have been performed on complexes 4 b, 7 b, 9, [12](+), [12](2+), and 14.  相似文献   

6.
The reactions of the hydrido compounds [RuHCl(CO)(L)2][L = PiPr3 (1), PCy3 (2)] with HC(triple bond)CR (R = H, Ph, tBu) afforded by insertion of the alkyne into the Ru-H bond the corresponding vinyl complexes [RuCl(CHCHR)(CO)(L)2], 3-8, which upon protonation with HBF4 gave the cationic five-coordinated ruthenium carbenes [RuCl(CHCH2R)(CO)(L)2]BF4, 9-14. Subsequent reactions of the carbene complexes with PR3(R = Me, iPr) and CH3CN led either to deprotonation and re-generation of the vinyl compounds or to cleavage of the ruthenium-carbene bond and the formation of the six-coordinated complexes [RuCl(CO)(CH3CN)2(PiPr3)2]BF4, 17, and [RuH(CO)(CH3CN)2(PiPr3)2]X, 18a,b. The acetato derivative [RuH(2-O2CCH3)(CO)(PCy3)2], 19, also reacted with acetylene and phenylacetylene by insertion to yield the related vinyl complexes [Ru(CHCHR)(kappa2-O2CCH3)(CO)(PCy3)2], 20, 21, of which that with R = H was protonated with HBF4 to yield the corresponding cationic ruthenium carbene 22. With [RuHCl(H2)(PCy3)2], 25, as the starting material, the five-coordinated chloro(hydrido)ruthenium(II) compounds [RuHCl(PCy3)(dppf)], 26(dppf = [Fe(eta5-C5H4PPh2)2]), [RuHCl[Sb(CH2Ph)3](PCy3)2], 27, and [RuHCl(CH3CN)(PCy3)2], 30, were prepared. The reactions of 27 with HCCR (R = H, Ph) gave the hydrido(vinylidene) complexes [RuHCl(CCHR)(PCy3)2], 28 and 29, whereas treatment of 30 with HC(triple bond)CPh afforded the vinyl compound [RuCl(CHCHPh)(CH3CN)(PCy3)2], 31. The molecular structures of 11(R = tBu, L = PiPr3) and 26 were determined crystallographically.  相似文献   

7.
Reaction of the neutral P(H)NP ligand [HN(SiMe(2)CH(2)PPh(2))(2)] with tungsten hexacarbonyl resulted in coordination of P(H)NP through both phosphorus donor atoms to form the tungsten complex [W(P(HN)P)(CO)(4)] (1). Reaction of P(H)NP with tris(acetonitrile)tricarbonyl tungsten gave both facial and meridional tridentate isomers [W(P(H)NP)(CO)(3)] (2-fac and 3-mer). These three d(6) tungsten complexes could be interconverted under appropriate conditions. The thermodynamically favored isomer 3 was protonated to form seven-coordinate [W(P(H)NP)(CO)(3)H][BF(4)] (4). A related series of cationic tungsten(ii) halide complexes was synthesized, [W(P(H)NP)(CO)(3)X](+) (6, X = I; 7, X = Br; 8, X = Cl; 9, X = F), by various routes. All of the tungsten(ii) complexes underwent deprotonation at the amine site of the P(H)NP ligand when triethylamine was added, resulting in neutral seven-coordinate complexes. Variable temperature (1)H, (31)P{(1)H}, and (13)C{(1)H} NMR spectroscopy showed fluxional behavior for all the seven-coordinate complexes reported here. Analysis of IR and NMR spectroscopic data showed trends through the series of coordinated halides. Crystal structures of tetracarbonyl 1, meridional tricarbonyl 3, and cationic hydride 4 were determined to confirm the coordination mode of the P(H)NP ligand.  相似文献   

8.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

9.
Reaction of the diamidozirconium complex [Zr(N2(TBS)Npy)(NMe2)2] (1) (N2(TBS)Npy = CH3C(C5H4N)(CH2NSiMe2tBu)2) or the diamidohafnium complex [Hf(N2(TBS)Npy)(NMe2)2] (2) with one molar equiv. of 1-aminopyridinium triflate in the presence of one equiv. of pyridine gave the corresponding (1-pyridinio)imido complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(OTf)(py)] (3) and [Hf(N2(TBS)Npy)(=N-NC5H5)(OTf)(py)] (4). These were converted to the acetylide complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(CCPh)(py)] (5) and [Hf(N2(TBS)Npy)(=N-NC5H5)(CCPh)(py)] (6) by reaction with lithium phenylacetylide and substitution of the triflato ligand. Upon reaction of 3 and 4 with one molar equivalent of R-NC (R = tBu, Cy, 2,6-xyl), N-N bond cleavage in the (1-pyridinio)imido unit took place and the respective carbodiimido complexes [M(N2(TBS)Npy](N=C=NR)(OTf)(py)] (7-12) were formed instantaneously. A similar type of reaction with CO gave the isocyanato complex [Zr(N2(TBS)Npy](NCO)(OTf)(py)] (13). Finally, the abstraction of the pyridine ligand in compounds 3 and 4 with B(C6F5)3 led to the formation of the triflato-bridged dinuclear complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(OTf)]2 (14) and [Hf(N2(TBS)Npy)(=N-NC5H5)(OTf)]2 (15).  相似文献   

10.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

11.
A series of new hydroxyindanone-imine ligands [PhN=CC2H3(CH3)C6H2(CH3)OH] (HL1) and [ArN=CC2H3(CH3)C6H2(R)OH] (Ar = 2,6-i-Pr(2)C(6)H(3), R = Me (HL2), R = H (HL3), and R = Cl (HL4)) were synthesized and characterized. Reactions of hydroxyindanone-imines with Ni(OAc)(2).4H(2)O result in the formation of the trinuclear hexa(indanone-iminato)tri(nickel(II)) complex Ni(3)[PhN=CC2H3(CH3)C6H2(CH3)O](6) (1) and the mononuclear bis(indanone-iminato)nickel(II) complexes Ni[ArN=CC2H3(CH3)C6H2(R)O](2) (Ar = 2,6-i-Pr(2)C(6)H(3), R = Me (2), R = H (3), and R = Cl (4)). All nickel complexes were characterized by their IR, NMR spectra and elemental analyses. In addition, X-ray structure analyses were performed for complexes 1 and 2. After being activated with methylaluminoxane (MAO), these nickel(II) complexes can be used as catalysts for the polymerization of methyl methacrylate (MMA) to produce syndiotactic-rich PMMA. Catalytic activities and the degree of syndiotacticity of PMMA have been investigated for various reaction conditions.  相似文献   

12.
A detailed mechanistic study of arene C [bond] H activation in CH(2)Cl(2) solution by Cp(L)IrMe(X) [L = PMe(3), P(OMe)(3); X = OTf, (CH(2)Cl(2))BAr(f); (BAr(f) = B[3,5-C(6)H(3)(CF(3))(2)](4))(-)] is presented. It was determined that triflate dissociation in Cp(L)IrMe(OTf), to generate tight and/or solvent-separated ion pairs containing a cationic iridium complex, precedes C [bond] H activation. Consistent with the ion-pair hypothesis, the rate of arene activation by Cp(L)IrMe(OTf) is unaffected by added external triflate salts, but the rate is strongly dependent upon the medium. Thus the reactivity of Cp(PMe(3))IrMe(OTf) can be increased by almost 3 orders of magnitude by addition of (n-Hex)(4)NBAr(f), presumably because the added BAr(f) anion exchanges with the OTf anion in the initially formed ion pair, transiently forming a cation/borate ion pair in solution (special salt effect). In contrast, addition of (n-Hex)(4)NBAr(f) to [CpPMe(3)Ir(Me)CH(2)Cl(2)][BAr(f)] does not affect the rate of benzene activation; here there is no initial covalent/ionic pre-equilibrium that can be perturbed with added (n-Hex)(4)NBAr(f). An analysis of the reaction between Cp(PMe(3))IrMe(OTf) and various substituted arenes demonstrated that electron-donating substituents on the arene increase the rate of the C [bond] H activation reaction. The rate of C(6)H(6) activation by [Cp(PMe(3))Ir(Me)CH(2)Cl(2)][BAr(f)] is substantially faster than [Cp(P(OMe)(3))Ir(Me)CH(2)Cl(2)][BAr(f)]. Density functional theory computations suggest that this is due to a less favorable pre-equilibrium for dissociation of the dichloromethane ligand in the trimethyl phosphite complex, rather than to a large electronic effect on the C [bond] H oxidative addition transition state. Because of these combined effects, the overall rate of arene activation is increased by electron-donating substituents on both the substrate and the iridium complex.  相似文献   

13.
The reactivity of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and W(NPh)(o-(Me3SiN)2C6H4)(pic)2 (py=pyridine; pic=4-picoline) with unsaturated substrates has been investigated. Treatment of W(NPh)(o-(Me3SiN)2C6H4)(py)2 with diphenylacetylene or 2,3-dimethyl-1,3-butadiene generates W(NPh)(o-(Me3SiN)2C6H4)(eta2-PhCCPh) and W(NPh)(o-(Me3SiN)2C6H4)(eta4-CH2=C(Me)C(Me)=CH2), respectively, while the addition of ethylene to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates the known metallacycle W(NPh)(o-(Me3SiN)2C6H4)(CH2CH2CH2CH2). The addition of 2 equiv of acetone to W(NPh)(o-(Me3SiN)2C6H4)(pic)2 provides the azaoxymetallacycle W(NPh)(o-(Me3SiN)2C6H4)(OCH(Me)2)(OC(Me)2-o-C5H3N-p-Me), the result of acetone insertion into the ortho C-H bond of picoline. Similarily, the addition of 2 equiv of RC(O)H [R=Ph, tBu] to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates W(NPh)(o-(Me3SiN)2C6H4)(OCH2R)(OCHR-o-C5H4N) [R=Ph, tBu,]. In contrast, reaction between W(NPh)(o-(Me3SiN)2C6H4)(py)2 and 2-pyridine carboxaldehyde yields the diolate W(NPh)(o-(Me3SiN)2C6H4)(OCH(C5H4N)CH(C5H4N)O). The synthesis of W(NPh)(o-(Me3SiN)2C6H4)(PMe3)(py)(eta2-OC(H)C6H4-p-Me), formed by the addition of p-tolualdehyde to a mixture of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and PMe3, suggests that an eta2-aldehyde intermediate is involved in the formation of the azaoxymetallacycle, while the isolation of W(NPh)(o-(Me3SiN)2C6H4)(Cl)(OC(Me)(CMe3)-o-C5H4N), formed by the reaction of pinacolone with W(NPh)(o-(Me3SiN)2C6H4)(py)2, in the presence of adventitious CH2Cl2, suggests that the reaction proceeds via the hydride W(NPh)(o-(Me3SiN)2C6H4)(H)(OC(Me)(CMe3)-o-C5H4N).  相似文献   

14.
The synthesis and characterization of several Pt(ii) complexes, including formyl complexes, based on the PCP-type pincer ligands C(6)H(4)[CH(2)P(iPr)(2)](2) ((iPr)PCP) and C(6)H(4)[CH(2)P(tBu)(2)](2) ((tBu)PCP) are described. The chloride complex ((iPr)PCP)PtCl (6) and the unsaturated cationic complexes [(PCP)Pt](+)X(-) (X = OTf(-), BF(4)(-)) (1, 7), based on both PCP ligands, were prepared and the latter reacted with carbon monoxide to give the corresponding cationic carbonyl complexes [(PCP)Pt(CO)](+)X(-) (X = OTf(-), BF(4)(-)) (2, 8a). Hydride nucleophilic attack on both carbonyl complexes resulted in rare neutral platinum formyl complexes ((iPr)PCP)Pt(CHO) (3) and ((tBu)PCP)Pt(CHO) (9). Complex 3 undergoes decarbonylation to the corresponding hydride complex within hours at room temperature, while the bulkier complex 9 is more stable and undergoes complete decarbonylation only after 3-4 d. This observation demonstrates the very significant steric effect of the ligand on stabilization of the corresponding formyl complexes. Reaction of complex 9 with triflic acid resulted in the carbonyl complex [((tBu)PCP)Pt(CO)](+) OTf(-) (8b) with liberation of H(2), an unusual transformation for a metal formyl. Reaction with methyl triflate resulted in the Fischer carbene-type complex, the methoxy-methylidene [((tBu)PCP)Pt(CHOCH(3))](+)OTf(-) (11). The X-ray structures of complexes 2, 6, 8a and 11 were determined.  相似文献   

15.
Treatment of the osmabenzyne Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)Cl(2)(PPh(3))(2) (1) with 2,2'-bipyridine (bipy) and thallium triflate (TlOTf) produces the thermally stable dicationic osmabenzyne [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) (2). The dicationic osmabenzyne 2 reacts with ROH (R = H, Me) to give osmabenzene complexes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf, in which the metallabenzene ring deviates significantly from planarity. In contrast, reaction of the dicationic complex 2 with NaBH(4) produces a cyclopentadienyl complex, presumably through the osmabenzene intermediate [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf. The higher thermal stability of [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf relative to [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf can be related to the stabilization effect of the OR groups on the metallacycle. A theoretical study shows that conversion of the dicationic osmabenzyne complex [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) to a carbene complex by reductive elimination is thermodynamically unfavorable. The theoretical study also suggests that the nonplanarity of the osmabenzenes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf is mainly due to electronic reasons.  相似文献   

16.
New [CpM(Q)Cl] complexes (M = Rh or Ir, Cp = pentamethylcyclopentadienyl, HQ = 1-phenyl-3-methyl-4R(C=O)-pyrazol-5-one in general, in detail HQ(Me), R = CH(3); HQ(Et), R = CH(2)CH(3); HQ(Piv), R = CH(2)-C(CH(3))(3); HQ(Bn), R = CH(2)-(C(6)H(5)); HQ(S), R = CH-(C(6)H(5))(2)) have been synthesized from the reaction of [CpMCl(2)](2) with the sodium salt, NaQ, of the appropriate HQ proligand. Crystal structure determinations for a representative selection of these [CpM(Q)Cl] compounds show a pseudo-octahedral metal environment with the Q ligand bonded in the O,O'-chelating form. In each case, two enantiomers (S(M)) and (R(M)) arise, differing only in the metal chirality. The reaction of [CpRh(Q(Bn))Cl] with MgCH(3)Br produces only halide exchange with the formation of [CpRh(Q(Bn))Br]. The [CpRh(Q)Cl] complexes react with PPh(3) in dichloromethane yielding the adducts CpRh(Q)Cl/PPh(3) (1:1) which exist in solution in two different isomeric forms. The interaction of [CpRh(Q(Me))Cl] with AgNO(3) in MeCN allows generation of [CpRh(Q(Me))(MeCN)]NO(3).3H(2)O, whereas the reaction of [CpRh(Q(Me))Cl] with AgClO(4) in the same solvent yields both [CpRh(Q(Me))(H(2)O)]ClO(4) and [CpRh(Cl)(H(2)O)(2)]ClO(4); the H(2)O molecules derive from the not-rigorously anhydrous solvents or silver salts.  相似文献   

17.
The synthesis of a series of dicationic Ir(III) complexes is described. Reaction of Ir(CO)(dppe)I (dppe = 1,2-bis(diphenylphosphino)ethane)) with RI (R = CH(3) and CF(3)) results in formation of the Ir(III) precursors IrR(CO)(dppe)(I)(2) (R = CH(3) (1a) and CF(3) (1b)). Subsequent treatment with AgOTf (OTf = triflate) generates the bis(triflate) analogues IrR(CO)(dppe)(OTf)(2) (R = CH(3) (2a) and CF(3) (2b)), which undergo clean metathesis with NaBARF (BARF = B(3,5-(CF(3))(2)C(6)H(3))(4)(-)) in the presence of 1,2-diiodobenzene (DIB) forming the dicationic halocarbon adducts [IrR(CO)(dppe)(DIB)][BARF](2) (R = CH(3) (3a) and CF(3) (3b)). Complexes 3a and 3b demonstrate facile exchange chemistry with acetonitrile and carbon monoxide forming complexes 4 and 5, respectively. NMR investigation of the mechanism reveals that the process proceeds through an eta(1)-diiodobenzene adduct, where labilization at the coordination site trans to the alkyl group occurs first. Complex 3a reacts with ethylene forming the cationic iridium(I) product [Ir(C(2)H(4))(2)(CO)(dppe)][BARF] (6), which demonstrates fluxional behavior. Variable-temperature NMR studies indicate that the five-coordinate complex 6 undergoes three dynamic processes corresponding to ethylene rotation, Berry pseudorotation, and intermolecular ethylene exchange in order of increasing temperature based on NMR line shape analyses used to determine the thermodynamic parameters for the processes. The DIB adducts 3a and 3b were also found to promote olefin isomerization of 1-pentene, and polymerization/oligomerization of styrene, alpha-methylstyrene, norbornene, beta-pinene, and isobutylene via cationic initiation.  相似文献   

18.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

19.
Tantalum complexes [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NMe(2))=CH)py}] (4) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NH(2))=CH)py}] (5), which contain modified alkoxide pincer ligands, were synthesized from the reactions of [TaCp*Me{κ(3)-N,O,O-(OCH(2))(OCH)py}] (Cp* = η(5)-C(5)Me(5)) with HC≡CCH(2)NMe(2) and HC≡CCH(2)NH(2), respectively. The reactions of [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(Ph)=CH)py}] (2) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(SiMe(3))=CH)py}] (3) with triflic acid (1:2 molar ratio) rendered the corresponding bis-triflate derivatives [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(Ph)=CH(2))py}] (6) and [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(SiMe(3))=CH(2))py}] (7), respectively. Complex 4 reacted with triflic acid in a 1:2 molar ratio to selectively yield the water-soluble cationic complex [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH)py}]OTf (8). Compound 8 reacted with water to afford the hydrolyzed complex [TaCp*(OH)(H(2)O){κ(3)-N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH(2))py}](OTf)(2) (9). Protonation of compound 8 with triflic acid gave the new tantalum compound [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH)py}](OTf)(2) (10), which afforded the corresponding protonolysis derivative [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH(2))py}](OTf) (11) in solution. Complex 8 reacted with CNtBu and potassium 2-isocyanoacetate to give the corresponding iminoacyl derivatives 12 and 13, respectively. The molecular structures of complexes 5, 7, and 10 were established by single-crystal X-ray diffraction studies.  相似文献   

20.
Reaction between cationic units of carboxylate-bridged diruthenium complexes [Ru(2)(mu-O(2)CR)(4)](+) (R = Me, CMePh(2), CMe(3), CH(2)CH(2)OMe, C(Me)=CHEt, C(6)H(4)-p-OMe, Ph) and tetrabutylammonium perrhenate gives complexes with different arrangements in the solid state. Thus, the compounds Ru(2)(mu-O(2)CR)(4)(ReO(4)) [R = Me (1), CMePh(2) (2), CMe(3) (3), CH(2)CH(2)OMe (4), C(Me)=CHEt (5), C(6)H(4)-p-OMe (6), Ph (7)] have polymeric structures with the diruthenium units linked by perrhenate ligands in the axial positions. The structures of complexes 3.THF and 4 were established by single-crystal X-ray diffraction. The tetrahedral geometry of the ReO(4)(-) anion permits the formation of a chain close to the linearity. In contrast to the polymeric chains observed in complexes 1-7, the reaction of [Ru(2)(mu-O(2)CPh)(4)](+) with NBu(4)ReO(4) also affords the compounds Ru(2)(mu-O(2)CPh)(4)(ReO(4))(H(2)O) (8) and NBu(4)[Ru(2)(mu-O(2)CPh)(4)(ReO(4))(2)] (9) depending on the reaction conditions. The structure of 8 consists of cationic and anionic units, [Ru(2)(mu-O(2)CPh)(4)(H(2)O)(2)](+) and [Ru(2)(mu-O(2)CPh)(4)(ReO(4))(2)](-), linked by hydrogen bonds, which give a three-dimensional net. The structure of complex 9.0.5H(2)O has an anionic unit similar to that of 8, whose counterion is NBu(4)(+). The Ru-Ru bond distances are slightly longer in [Ru(2)(mu-O(2)CPh)(4)(ReO(4))(2)](-) than in the polymeric compounds Ru(2)(mu-O(2)CR)(4)(ReO(4)). The magnetic behavior owes to the existence of zero-field splitting (ZFS) and a weak antiferromagnetic coupling. The experimental data are fitted with a model that considers the ZFS effect using the Hamiltonian (D) = SDS. The weak antiferromagnetic coupling is introduced as a perturbation, using the molecular field approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号