首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interplay between antiferromagnetism (AF) and superconductivity (SC) in cuprates is studied for the two-dimensional Hubbard model with a diagonal transfer t′, using a variational Monte Carlo method. Optimizing an improved function for strongly correlated values of U/t, we construct phase diagrams in the δ (doping rate)-t′/t space. It is found that the stable state is sensitive to the value of model parameters: For the extremely large values of U/t, a coexisting state is realized for t′/t ? −0.15, whose range of doping rate extends as t′/t increases. In contrast, for t′/t = −0.3, AF and SC states are mutually exclusive, and a coexisting state does not appear. As U/t decreases, the area of pure AF extends, and that of coexisting state shrinks. As a result, the coexisting state disappears for t′/t = −0.15 and U/t = 12, probable values for hole-doped cuprates. Compared with the tJ model, the Hubbard model has richer phases.  相似文献   

2.
To consider the origin of a pseudogap and a superconducting (SC) gap found in the high-Tc cuprates, we evaluated the momentum dependence of the singlet gap corresponding to the pseudogap and the SC gap in the tJ model, using an optimization variational Monte Carlo (VMC) method. In the underdoped regime, the singlet gap is significantly modified from the simple dx2-y2(d)-wave gap (∝ cos kx − cos ky) by the contribution of long-range pairings. Its angular dependence at the quasi Fermi surface is qualitatively consistent with those experimentally observed in both hole and electron-doped cuprates. On the other hand, a SC gap is almost unchanged, preserving the original simple d-wave form. Thus, it seems that the incoherent part of the singlet gap mainly influences the forms of observed gaps.  相似文献   

3.
We investigate a superconducting Kosterlitz–Thouless transition in the two-dimensional (2D) Hubbard model using auxiliary quantum Monte Carlo method for the ground state. The pair susceptibility is computed for both the attractive and repulsive Hubbard model. The numerical results show that the s-wave pair susceptibility scales as χ  L2 for the attractive case, in agreement with previous quantum Monte Carlo studies. The scaling χ  L2 also holds for the d-wave pair susceptibility for the repulsive Hubbard model if we adjust the band parameter t′.  相似文献   

4.
The three-band Hubbard model — both pure and with static non-magnetic impurities — has been studied within a self-consistent numerical Hartree-Fock (HF) scheme. The system shows nesting properties only in the absence of direct O-O hopping. Spin excitations in the system are gapless with the existence of a Goldstone mode in the broken-symmetry state. The variation of spinwave velocity with Cu-site Coulomb repulsion shows a (1/(2U d)+(1/Δ)) dependence in the strong-coupling limit. Each non-magnetic impurity in the system gives rise to two gap states for a particular spin and the local moment produced is robust even at finite concentration of mobile hole doping. The gapless Goldstone mode is preserved even in case of unequal concentration of impurities on the two sublattices.  相似文献   

5.
We present an investigation of the 2D attractive Hubbard model, considered as an effective model relevant to superconductivity in strongly interacting electron systems. We use both hybrid Monte-Carlo simulations and existing hopping parameter expansions to explore the low temperature domain. The increase of the static S-wave pair correlation with decreasing temperature, which depends weakly on the band filling in the explored temperature range, is analyzed in terms of an expected Kosterlitz-Thouless superconducting transition. Using both our data and previously published results, we show that the evidence for this transition is weak: If it exists, its temperature is very low. The number of unpaired electrons remains nearly constant with temperature at fixed attractive potential strength. In contrast, the static magnetic susceptibility decreases fast with temperature, and cannot be related only to pair formation. We introduce a method by which the Padé approximants of the existing series for the susceptibility give sensible results down to rather low temperature region, as shown by comparison with our numerical data. Received: 30 October 1996 / Revised: 23 October 1997 / Accepted: 29 January 1998  相似文献   

6.
全亚民  刘大勇  邹良剑 《物理学报》2012,61(1):17106-017106
通过综合模式搜索法、广义Lagrange乘子法、以及转轴法等多种数值方法, 建立了一套针对多轨道Hubbard模型隶玻色子解法的数值优化方法. 该数值方法能够在考虑晶场劈裂、轨道间跳跃以及真实能带结构基础上, 利用隶玻色子方法计算实际关联电子材料的性质. 首先利用该方法计算了两轨道体系的Mott金属-绝缘体转变性质, 得到了与目前已有工作一致的结果; 然后利用该方法讨论了Coulomb关联对三轨道体系NaxCoO2的影响. 结果表明: 在中间关联情况下由eg'轨道形成的六个小Fermi面消失, 原因是由于电子关联导致该轨道上的空穴数随U减少. 这些结果也证实了算法的正确性和有效性. 关键词: 多轨道Hubbard模型 隶玻色子 Mott转变 xCoO2')" href="#">NaxCoO2  相似文献   

7.
The results of our initial efforts to deposit thin films of YBa2Cu3O7−x system on sapphire substrate are described. The deposited films are shiny black in appearance and are of quite uniform chemical composition. The annealed films exhibit zero resistance superconducting transition temperatureT c(R=0) ranging between 23 K and 30 K.  相似文献   

8.
By developing a diagonalization scheme we observe that the dynamics of interacting electrons or holes locally coupled to dispersionless phonon mode in one-dimensional lattice can be mapped into that of paired electron or hole states (bipolaronic states), which then gives a physically appealing picture of excitation modes of the interacting electron or hole gas. As a result, the bipolaronic model of the interacting electron or hole gas, obtained from Holstein–Hubbard Hamiltonian in one-dimensional lattice, exhibits normalization of the hopping terms and leads to a reduced effective mass of the bipolaron, which essentially gives support to the bipolaronic theory of high Tc superconductivity.  相似文献   

9.
We discuss how to make use of high-Tc d-wave Josephson junctions in the construction of a phase qubit. We especially focus on the effect of the quasiparticle dissipation and the zero energy bound state on the macroscopic quantum tunneling which corresponds to the final measurement process of the d-wave phase qubit.  相似文献   

10.
We have recently achieved superconductivity in T′-RE2CuO4 (RE: Pr, Nd, Sm, Eu, and Gd), using epitaxial thin films by metal organic decomposition. The key recipes to achieve superconductivity are low-PO2 firing and subsequent vacuum reduction to minimize the amount of impurity oxygen atoms, which are very harmful to high-Tc superconductivity. In this article, we report our investigation on the reduction dependence of superconductivity of T′-RE2CuO4. For thin films, the amount of remnant Oap atoms is difficult to evaluate but we propose that one good measure for this may be the c-axis lattice constant, which tells us whether the reduction is insufficient or excessive.  相似文献   

11.
In order to describe the dynamics of the tJ model, two different families of first-order Lagrangians in terms of the generators of the Hubbard algebra are found. Such families correspond to different dynamical second-class constrained systems. The quantization is carried out by using the path-integral formalism. In this context the introduction of proper ghost fields is needed to render the model renormalizable. In each case the standard Feynman diagrammatics is obtained and the renormalized physical quantities are computed and analyzed. In the first case a nonperturbative large-N expansion is considered with the purpose of studying the generalized Hubbard model describing N-fold-degenerate correlated bands. In this case the 1/N correction to the renormalized boson propagator is computed. In the second case the perturbative Lagrangian formalism is developed and it is shown how propagators and vertices can be renormalized to each order. In particular, the renormalized ferromagnetic magnon propagator coming from our formalism is studied in details. As an example the thermal softening of the magnon frequency is computed. The antiferromagnetic case is also analyzed, and the results are confronted with previous one obtained by means of the spin-polaron theories.  相似文献   

12.
Ziyu Hu 《Phase Transitions》2015,88(7):726-734
Using first-principles methods, we systematically investigate the electronic properties and atomic mechanism of the monolayer MoS2/WS2 homo-junction structure, which contains different phase structures, either the semiconducting hexagonal (H) structure or metallic trigonal (T) structure. Through tuning the size of the lateral homo-junction structure of either MoS2 or WS2, it can produce different boundaries which induce different phase transferred styles. More interestingly, the electronic structures of homo-junction structures can also be tuned by changing the size of the armchair and zigzag shapes of nanoribbons. The homo-junction structure of either MoS2 or WS2 exhibits alterable band structure and band edge position with the changing of the size. The strong dependence of the band offset on the sizes of the homo-junction monolayer also implicates a possible way of patterning quantum structures with size engineering.  相似文献   

13.
In this study 2H T2rho DQF NMR spectra of water in MCM-41 were measured. The T2rho double-quantum filtered (DQF) NMR signal is generated by applying a radio frequency (RF) field for various durations and then observed after a monitor RF pulse. It was found that the transfer between different quantum coherences by the couplings during long-duration RF fields (i.e., soft pulses) and that residual quadrupolar interaction dominates the signal decay. Knowledge of coherence transfer during long-RF pulses has special significance for the development of sophisticated multi-quantum NMR experiments especially multi-quantum MRI applications.  相似文献   

14.
We investigated the generic phase diagram of the electron doped superconductor, Nd2−xCexCuO4, using films prepared by metal organic decomposition. After careful oxygen reduction treatment to remove interstitial Oap atoms, we found that the Tc increases monotonically from 24 K to 29 K with decreasing x from 0.15 to 0.00, demonstrating a quite different phase diagram from the previous bulk one. The implication of our results is discussed on the basis of tremendous influence of Oap “impurities” on superconductivity and also magnetism in T′ cuprates. Then we conclude that our result represents the generic phase diagram for oxygen-stoichiometric Nd2−xCexCuO4.  相似文献   

15.
The lateral restorable characteristics of a translational symmetry high-Tc superconducting maglev system are investigated by measuring its resonant frequency (fRF) after a lateral displacement. The difference between whether this lateral displacement is restorable, meaning elastic or inelastic, is determined by whether or not the maglev body returns to its original position after a lateral displacement. The maximum restorable lateral displacement (δMRLD) is determined by the sudden change of the fRF vs. the maximum lateral displacement (δMLD) curve. The fRF of the high-Tc superconducting maglev system with different field-cooling height (FCH) and working height (WH) was obtained from the frequency domain vibration curve which was measured by a vibration measurement system. The results showed that, the δMRLD was reduced when the WH was decreased. The maximum restorable guidance force (FMRGF) was found to not always increase with the lowering of the WH for the same FCH. The lateral restorable stiffness (kLRS) was always enhanced with the decrease of the WH. The decrease of the δMRLD with the WH is interpreted by the fact that, the tangential field component (ΔH) across the surface of the high-Tc superconductor (HTSC) is easier to exceed the Jcλ value (Jc is the critical current density and λ is the London penetration depth) when the WH is lowered, and this makes the trapped flux lines become more susceptible in escaping its pinning sites.  相似文献   

16.
We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe2As2, BaFe2As2, and (Ba0.55K0.45)Fe2As2, by means of measurements of electrical resistivity (ρ) in the 1.8-300 K temperature (T) range, pressures up to 20 kbar, and magnetic fields up to 9 T. CaFe2As2 and BaFe2As2 (lightly doped with Sn) display structural phase transitions near 170 and 85 K, respectively, and do not exhibit superconductivity in ambient pressure, while K-doped (Ba0.55K0.45)Fe2As2 is superconducting for T<30 K. The effect of pressure on BaFe2As2 is to shift the onset of the crystallographic transformation down in temperature at the rate of ~−1.04 K/kbar, while shifting the whole ρ(T) curves downward, whereas its effect on superconducting (Ba0.55K0.45)Fe2As2 is to shift the onset of superconductivity to lower temperatures at the rate of ~−0.21 K/kbar. The effect of pressure on CaFe2As2 is first to suppress the crystallographic transformation and induce superconductivity with onset near 12 K very rapidly, i.e., for P<5 kbar. However, higher pressures bring about another phase transformation characterized by reduced-resistivity, and the suppression of superconductivity, confining superconductivity to a narrow pressure dome centered near 5 kbar. Upper critical field (Hc2) data in (Ba0.55K0.45)Fe2As2 and CaFe2As2 are discussed.  相似文献   

17.
18.
We have investigated theoretically the Nernst effect in unconventional (d-wave) charge and spin density waves (UDW). In the presence of magnetic field, Landau levels are formed, and the gapless behaviour of the low energy excitations change into gapped behaviour. When additional electric field is applied, the quasiparticles drift with a velocity of E × B/B2, and carry entropy. From this, the Nernst coefficient can be calculated using the Kelvin relation. The present results account very nicely for the measured Nernst signal in the pseudogap phase of high Tc superconductor La2−xSrxCuO4 and Bi2Sr2−yLayCuO6. This indicates that the large Nernst effect is a clear signiture of UDW.  相似文献   

19.
The dynamics of hydration-water in several phospholipid membranes of different compositions is studied by 2D (1)H-(31)P heteronuclear correlation NMR under magic-angle spinning. By using a (1)H T(2) filter before and a (1)H mixing-time after the evolution period and (31)P detection, inter-bilayer water is selectively detected without resonance overlap from bulk water outside the multilamellar vesicles. Moreover the (1)H T(2) relaxation time of the inter-bilayer water is measured. Lipid membranes with labile protons either in the lipid headgroup or in sterols exhibit water-(31)P correlation peaks while membranes free of exchangeable protons do not, indicating that the mechanism for water-lipid correlation is chemical exchange followed by relayed magnetization transfer to (31)P. In the absence of membrane proteins, the inter-bilayer water (1)H T(2)'s are several tens of milliseconds. Incorporation of charged membrane peptides shortened this inter-bilayer water T(2) significantly. This T(2) reduction is attributed to the peptides' exchangeable protons, molecular motion and intermolecular hydrogen bonding, which affect the water dynamics and the chemically relayed magnetization transfer process.  相似文献   

20.
A new series of mixed oxide superconductors with the stoichiometric composition La2−x Dy x Ca y Ba2Cu4+y O z (x=0.0 − 0.5, y=2x) has been studied for structural and superconductiong properties. Our earlier studies on La2−x (Y/Er) x Ca y Ba2Cu4+y O z series, show a strong dependence of T c on hole concentration (p sh). In the present work, the results of the analysis of the neutron diffraction measurements at room temprerature on x=0.3 and 0.5 samples are reported. It is interesting to know that Ca substitutes for both La and Ba site with concomitant displacement of La onto Ba site. Superconductivity studies show that maximum T c is obtained for x=0.5, y=1.0 sample (T c ∼ 75 K), for La1.5Dy0.5Ca1Ba2Cu5O z (La-2125).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号