首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic study has been carried out on the effects of interface bonding on the strain mediated magnetoelectric (ME) coupling in ferromagnetic-ferroelectric bilayers. The technique used involves the static electric field E tuning of the ferromagnetic resonance (FMR) in yttrium iron garnet (YIG) and lead zirconate titanate (PZT) or lead magnesium niobate-lead titanate (PMN-PT). A broad band detection technique has been developed for studies over 1?C40 GHz in three types of bilayers: epoxy bonded, eutectic bonded and YIG films directly grown onto piezoelectric substrate by electrophoretic deposition. The strength A of the converse ME effect (CME) defined as the ratio of the frequency shift ??f in FMR in E, A = ??f/E, varies over the range 0.8 to 4.3 MHz??cm/kV, and is the highest for eutectic bonded samples and is the weakest for epoxy bonded bilayers. The results presented here as of importance for dual electric and magnetic field tunable ferrite-ferroelectric microwave resonators and filters.  相似文献   

2.
A model is presented for the increase in magnetoelectric (ME) coupling in magnetostrictive-piezoelectric bilayers in the electromechanical resonance region. The ME voltage coefficients αE have been estimated for transverse field orientations corresponding to minimum demagnetizing fields and maximum αE. We solved the equation of medium motion taking into account the magnetostatic and elastostatic equations, constitutive equations, Hooke's law, and boundary conditions. The resonance enhancement of ME voltage coefficient for the bilayer is obtained at antiresonance frequency. To obtain the inverse ME effect, a pick up coil wound around the sample is used to measure the ME voltage due to the change in the magnetic induction in magnetostrictive phase. The measured static magnetic field dependence of ME voltage has been attributed to the variation in the piezomagnetic coefficient for magnetic layer. The frequency dependence of the ME voltage shows a resonance character due to the longitudinal acoustic modes in piezoelectric layer. The model is applied to specific cases of cobalt ferrite–lead zirconate titanate and nickel–lead zirconate titanate bilayers. Theoretical ME voltage coefficients versus frequency profiles are in agreement with data.  相似文献   

3.
In this letter, we investigate the influence of the stress on magnetoelectric (ME) effect in a magnetostrictive-PZT bilayer. ME voltage coefficient α*E = δE / δH, where δE is the induced electric field for an applied alternating current (ac) magnetic field δH, is obtained by solving the stress-related piezoelectric constitutive equation and the conventional magnetostrictive equation with appropriate boundary condition. Based on the free-energy density function of the PZT film in stress state, we get the stress-related piezoelectric charge coefficient p d*31 and dielectric permittivity pε*33. After taking the cobalt ferrite (CFO) as magnetostrictive phase, it is found that α*E increases with decreasing 2-d compressive stress for CFO-PZT, which not only is qualitatively consistent with previous experimental measurements, but also provides a possible route to improve the ME effect.   相似文献   

4.
Field dependences of the rhombohedral unit cell parameter a and birefringence of crystals of lead titanate zirconate with 4.2 mol % additions of Ti are found to be linear in the range from zero to 400 kV/cm. The linear and bulk expansions of the crystal in a field of 400 kV/cm are close to 0.25 and 0.7% respectively. The coefficient of the longitudinal piezoeffect f 33 computed based on data from Fx-ray structural analysis exhibit a strong nonlinearity: it increases monotonically by a factor of 7–8 as the electric field increases from zero to 200 kV/cm, and reaches saturation at stronger fields. Fiz. Tverd. Tela (St. Petersburg) 40, 327–329 (February 1998)  相似文献   

5.
A multiferroic heterostructure, consisting of a 25 μm thick Metglas® ribbon affixed to a lead magnesium niobate–lead titanate (PMN-PT) crystal, was systemically studied to investigate the time response of converse magnetoelectric coupling under the application of electric fields at low frequencies (0.05<f<10 Hz). This multiferroic heterostructure exhibits a considerably strong converse magnetoelectric effect, CME=?80%, where CME=[M(E)?M(0)]/M(0), and a converse ME coupling constant, A=22.5 Oe-cm/kV, at frequencies below 1 Hz and near saturation electric polarization. A switching time (t s), representing the response time of the CME coupling, is measured to be 0.6 seconds for this heterostructure under the application of instantaneous electric fields. The switching time results in significant influences on the magnetoelectric effect especially at frequencies higher than 2 Hz. The dynamic response of CME coupling is predominantly determined by ferroelectric relaxation within the PMN-PT crystal, as opposed to the magnetic relaxation of the Metglas® ribbon. A model was used to describe the dynamic behavior of CME coupling in disordered systems such as PMN-PT.  相似文献   

6.
Srinivasan G. 《物理学报》2006,55(5):2548-2552
讨论了Ni0.8Zn0.2Fe2O4 (NZFO)与锆钛酸铅(PZT)的双层膜结构样品的磁电(ME)效应.NZFO粉料由溶胶-凝胶法制成,再经900℃热压,并高温烧结.在该双层膜中测量到了很强的磁电相互作用.发现横向的磁电效应比纵向效应大一个数量级,并且随NZFO烧结温度的提高而增加.当烧结温度从950℃上升到1380℃时,横向ME电压系数(αE)的最大值变化范围为25.6 mV Am-2≤αE≤199.6 mV Am-2.理论分析显示NZFO-PZT双层膜样品中ME效应源于NZFO与PZT之间相对良好的磁电耦合. 关键词: 镍铁氧体 PZT 热压法 ME效应  相似文献   

7.
Low-frequency magnetoelectric (ME) coupling is investigated in bulk samples and multilayers of cobalt zinc ferrite, Co1-xZnxFe2O4 (x=0–0.6), and lead zirconate titanate. In bulk samples, the transverse and longitudinal couplings are weak and of equal magnitude. A substantial strengthening of ME interactions is evident in layered structures, with the ME voltage coefficient a factor of 10–30 higher than in bulk samples. Important findings of our studies of layered composites are as follows. (i) The transverse coupling is stronger than the longitudinal coupling. (ii) The strength of ME interactions is dependent on Zn substitution, with a maximum for x=0.4. (iii) A weak coupling exists at the ferromagnetic-piezoelectric interface, as revealed by an analysis of the volume and static magnetic field dependence of ME voltage coefficients. (iv) The interface coupling k increases with Zn substitution and the k versus x profile shows a maximum centered at x=0.4. (v) The Zn-assisted enhancement can be attributed to efficient magneto-mechanical coupling in the ferrite. PACS 75.80.+q; 75.50.Gg;75.60.-d;77.65.-j;77.65.Ly;77.84.Dy  相似文献   

8.
In this work, barium titanate (BT) and cement composites of 0-3 connectivity were produced with BT concentrations of 30%, 50% and 70% by volume using the mixing and pressing method. The dielectric constant (ε r ) and the dielectric loss (tan δ) at room temperature and at various frequencies (0.1–20 kHz) of the ferroelectric BT-Portland cement composites with different BT concentrations were investigated. The results show that the dielectric constant of BT-PC composites was found to increase as BT concentration increases, and that the highest value for ε r —of 436—was obtained for a BT concentration of 70%. In addition, the dielectric loss tangent decreased with increasing BT concentration. Moreover, several mathematical models were used; the experimental values of the dielectric constants are closest to those calculated from the cube model. The 0-3 cement-based piezoelectric composites show typical ferroelectric hysteresis loops at room temperature. The instantaneous remnant polarization (P ir ), at an applied external electrical field (E 0) of 20 kV/cm (90 Hz) of 70% barium titanate composite, was found to have a value ≈3.42 μC/cm2. Furthermore, the piezoelectric coefficient (d 33) was also found to increase as BT concentration increases, as expected. The highest value for d 33 was 16 pC/N for 70% BT composite.  相似文献   

9.
Ferrite-piezoelectric composites are magnetoelectric (ME) due to the interaction between magnetic and electrical subsystems through mechanical forces. A theory for the low-frequency Maxwell-Wagner relaxation in ME coefficients is discussed for bulk composites of nickel or cobalt ferrite and lead zirconate titanate (PZT). ME coefficients versus frequency spectra show two types of relaxation, over 0.1-100 μHz and 1-1000 Hz. The relaxation frequencies and the magnitude of the ME coefficients are dependent on the electrical and composite parameters and volume fraction for the two phases. The ME coefficient αE is in the range 10−1-104 mV/cm Oe, higher in cobalt ferrite-PZT than for nickel ferrite-PZT, and is strongly dependent on PZT volume fraction v. Estimates of αE and relaxation frequencies versus v provided here are useful for engineering composites with maximum ME effects for specific frequency bands.  相似文献   

10.
利用弹性力学模型,基于铁电相与铁磁相的本构方程,建立磁电复合材料的本构方程,推导2-2型非理想耦合的磁电双层、三层复合薄膜的纵向、横向磁电(ME)电压系数.研究铁磁相材料铁酸镍(NFO)和铁电相材料铌镁酸铅-钛酸铅(PMNT)复合的磁电效应,分析复合材料的磁电电压系数与PMNT体积分数、界面耦合参数、两相体积比及复合总层数的关系.结果表明两相材料的性能、体积分数以及耦合系数、复合层数都影响磁电电压系数.  相似文献   

11.
Composite structures consisting of (001)-oriented SrTiO3 (STO)/La0.7Sr0.3MnO3 (LSMO) films of 30 nm thickness, grown on an (001) Pb(Mg1/3Nb2/3)TiO3– 28 mol.% PbTiO3 piezoelectric relaxor-ferroelectric single-crystalline wafer were investigated by means of Wide-Angle X-ray Diffraction (WAXRD) in situ under influence of a d.c. electric field with strength E up to ±18 kV/cm. The WAXRD measurements of the films and substrate reflection profiles resulted in a determination of the strain s in the films and the substrate separately. The strained state of the STO/LSMO films is effectively controlled by a huge converse piezoelectric effect of the PMN-PT substrate. The coefficients of coupling between electric-field-induced out-of-plane strain in the films and in the substrate for the composite system STO/LSMO/PMN-PT are obtained.  相似文献   

12.
Layered thick-film composites containing one lead zirconate titanate (PZT) layer, one nickel zinc ferrite (NZF) layer, two PZT-NZF layers, or three PZT-NZF-PZT layers each 40–50 μm thick are prepared. The layers are applied by screen printing on a ceramic aluminum oxide substrate with a preformed contact (conducting) layer. The dielectric properties of the composites are studied in the temperature interval 80–900 K and the frequency interval 25 Hz-1 MHz. Polarized samples exhibit piezoelectric, pyroelectric, and magnetoelectric effects. In tangentially magnetized two- and three-layer composites, the magnetoelectric conversion factor equals 57 kV/(m T) at low frequencies and reaches 2000 kV/(m T) at the mechanical resonance frequency.  相似文献   

13.
陈传文  项阳 《物理学报》2012,61(10):107701-107701
以[001]c和[011]c极化的铌锌酸铅-钛酸铅晶体为研究对象, 利用子波理论对其无限大自由薄层中传播的Lamb波的色散及模式交叉特性进行了研究. 发现只有[001]c极化的晶体中的对称与反对称模式Lamb波之间出现了多次交叉, 并且变化规律与铌镁酸铅-钛酸铅的情形相同. Lamb波的A0和S0模式的交叉是由准纵向剪切波慢度曲线的多值关系引起的, 此时其x3方向的波数在一定范围内存在一对非纯虚数的复共轭根. 利用此结论推导出A0和S0模式交叉时弹性常数需要满足的条件, 为判断正交、四方对称性晶体中Lamb波的A0和S0模式是否交叉提供了一种直观、简便的方法.  相似文献   

14.
Lead-free piezoelectric ceramics Bi0.5(Na1-x-yKxAgy)0.5TiO3 [BNKAT(x/y)] have been synthesized by the mixed oxide method. The effects of the amount of K+ and Ag+ on the electrical properties were examined. X-ray diffraction patterns indicate that K+ and Ag+ ions partially substitute for the Na+ ions in Bi0.5Na0.5TiO3 and form a solid solution during sintering. At room temperature, the ceramics exhibit good performances with piezoelectric constant d33=189 pC/N, electromechanical coupling factor kp=35.0%, remanent polarization Pr=39.5 μC/cm2, and coercive field Ec=3.3 kV/mm, respectively. The curves of the dielectric constant εr and loss tangent tan δ versus temperature show that the transition temperature from ferroelectric to anti-ferroelectric phase decreases with increasing the K+ content for the compositions researched. The dependencies of kp and polarization versus electric (P–E) hysteresis loops on temperature reveal that the depolarization temperature Td of BNKAT(0.15/0.015) ceramics, which have good piezoelectric properties (d33=134 pC/N, kp=32.5%) and strong ferroelectricity (Pr=39.5 μC/cm2, Ec=4.1 kV/mm) at room temperature, is above 160 °C. PACS 77.22.-d; 77.65.Bn; 77.80.Bh; 77.80.Dj; 77.84.Dy  相似文献   

15.

Abstract  

This paper virtually presents induced behavior of an oppositely charged oil–water interface with the use of a high-speed camera. The elevation behavior of an oil–water interface is demonstrated experimentally, using a transparent acrylic cylindrical container (176 mm in inner diameter, 450 mm in height) with the bottom half (100 mm) filled with deionized water and the top half (between 50 and 150 mm) with an immiscible oil (viscosity 1 or 5 cSt). Copper fragments are inserted into each liquid (at top and bottom) to serve as electrodes, i.e., the oil layer is negatively charged, and the water layer is positively charged. A high-DC-voltage power supply provides potential difference of the order between about 1 and 30 kV. As a result, three kinds of behavior are observed, i.e.: (1) rotary motion on the interface in lower electric field supplied about E = 0.013 kV/mm; (2) fluctuation on the interface in medium electric field supplied about E = 0.021 kV/mm; (3) elevation of the interface in higher electric field supplied between E = 0.04 and 0.65 kV/mm (which depends on the depth of the oil layer).  相似文献   

16.
L.W. Li 《Applied Surface Science》2009,255(18):7841-7845
The effect of humidity on subcritical crack growth of indentation crack in lead zirconate titanate (PZT) ferroelectric ceramics under various sustained electric field has been investigated. The results showed that subcritical crack growth of indentation crack could occur in humid air of 60%RH without electric field but did not in air with RH ≤ 30%. The subcritical crack growth could occur in vacuum under a sustained electric field of E/EC = 0.14. The incubation time decreased and the amount of the subcritical crack growth increased with increasing the humidity under the sustained field. The threshold electric field for subcritical crack growth decreased with increasing the humidity.  相似文献   

17.
Manganite film electrodes were integrated with a spacer layer of strontium titanate to produce an epitaxial La0.67Ca0.33MnO3/(1000 nm)SrTiO3/La0.67Ca0.33MnO3 (LCMO/STO/LCMO) heterostructure by laser ablation. At T = 300 K, the mechanical stresses in the STO layer relaxed to a considerable extent, while the LCMO electrodes were found to be under biaxial lateral tensile strain, with the lattice unit cell of the top electrode distorted considerably stronger (a /a ≈ 1.026) than that of the bottom electrode (≈1.008) (a and a are the unit cell parameters in the substrate plane and along the normal to its surface, respectively). The reciprocal of the capacitance C of the plane-parallel LCMO/STO/LCMO film capacitors thus formed increased almost linearly with increasing temperature T in the range 50–250 K. At T < 100 K, the capacitance C decreased by approximately 50% in an electric field E = 40 kV/cm. After the electric field E was varied as 0 → + 100 kV/cm → 0, the capacitance C decreased by approximately 3% and the maximum in the C(E, T > 200 K) dependence shifted by approximately 9 kV/cm with respect to the point E = 0.  相似文献   

18.
The magnetoelectric (ME) effect is studied in composite two- and three-layer disk structures containing magnetostriction layers of an amorphous FeNiSiC ferromagnet and a lead zirconate titanate piezoelectric layer. Due to a high magnetostriction (∼33 × 10−6) and a low saturation field (∼200 Oe), an FeNiSiC layer has a high piezomagentic coefficient, which results in an effective ME coupling in low fields (∼25 Oe). The ME effect is ∼0.2 V cm−1 Oe−1 at a low frequency and increases to 11.9 and 13.2 V cm−1 Oe−1 when bending and in-plane mechanical vibrations are excited in a resonance manner in the structures at frequencies of ∼8.2 and ∼170.0 kHz, respectively. Structures containing amorphous FeNiSiC layers are promising for magnetic field transducers and electric energy generators and converters.  相似文献   

19.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

20.
The use of a pulsed magnetic field for studies on frequency characteristics of the magnetoelectric (ME) effect in multilayer composite structures is described. The method is based on the excitation of a ferrite-lead zirconate titanate multilayer with short magnetic field pulses, followed by the measurement and Fourier analysis of the ME response signal. It is shown that the ME voltage coefficient αE generally decreases as the frequency increases from 1 kHz to 1 MHz except (i) at some discrete frequencies where the coefficient increases by an order of magnitude due to electromechanical resonance in the structure and (ii) a local maximum at 2-4 kHz in αE vs. frequency due to relaxation processes caused by the conductivity of individual layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号