首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
At the "Standards Development and International Harmonization: AOAC INTERNATIONAL Mid-Year Meeting," on June 29, 2011, an Expert Review Panel agreed that the method "Determination of Vitamin B12 in Infant Formulas and Adult Nutritionals by Liquid Chromatography/UV Detection with Immunoaffinity Extraction" be adopted AOAC Official First Action status. The method is applicable for the determination of vitamin B12, which includes added cyanocobalamin and natural forms, making it applicable to both fortified and nonfortified products. Vitamin B12 is extracted from the sample in sodium acetate buffer in the presence of sodium cyanide (100 degrees C, 30 min). After purification and concentration with an immunoaffinity column, vitamin B12 is determined by LC with UV detection (361 nm). A single-laboratory validation study was conducted on a range of products, including milk- and soy-based infant formulas, cereals, cocoa beverages, health care products, and polyvitamin premixes. The method demonstrated linear response over a large range of concentrations, recovery rates of 100.8 +/- 7.5% (average +/- SD), repeatability RSD (RSDr) of 2.1%, and intermediate reproducibility (RSD(iR)) of 4.3%. LOD and LOQ values were 0.10 and 0.30 microg/100 g, respectively, and correlation with the reference microbiological assay was good (R2 = 0.9442). The results of the study were published in J. AOAC Int. 91, 786-793 (2008). The performance characteristics of the method met the standard method performance requirements set forth by the Stakeholder Panel on Infant Formula and Adult Nutritionals; thus, the method was determined to be appropriate for First Action status.  相似文献   

2.
A fast and simple method to determine vitamin B12 in foods is presented. The method allows, in addition to the determination of added cyanocobalamin, the determination of natural vitamin B12 forms, making it also applicable to nonfortified products, especially those that are milk-based. Vitamin B12 is extracted in sodium acetate buffer in the presence of sodium cyanide (100 degrees C, 30 min). After purification and concentration with an immunoaffinity column, vitamin B12 is determined by liquid chromatography with UV detection (361 nm). The method has been validated in analyses of a large range of products: milk- and soy-based infant formulas, cereals, cocoa beverages, health care products, and polyvitamin premixes. The method showed appropriate performance characteristics: linear response over a large range of concentrations, recovery rates of 100.8 +/- 7.5% (average +/- standard deviation), relative standard deviation of repeatability, RSDr, of 2.1%, and intermediate reproducibility, RSDiR, of 4.3%. Limits of detection and quantitation were 0.10 and 0.30 microg/100 g, respectively, and correlation with the reference microbiological assay was good (R2 = 0.9442). The proposed method is suitable for the routine determination of vitamin B12 in fortified foods, as well as in nonfortified dairy products. It can be used as a faster, more selective, and more precise alternative to the classical microbiological determination.  相似文献   

3.
A novel method was developed and single-laboratory validated for the determination of free pantothenic acid (vitamin B5) in a wide range of infant and adult fortified food products. The method combines simple sample preparation and chromatographic analysis using ultra-performance LC coupled to tandem MS with positive electrospray ionization. Pantothenic acid was quantified using [13C6, 15N2]-pantothenic acid as an internal standard. Calibration curves were linear between 0.08 and 1.2 microg/mL (r2 = 0.9998), and average recovery varied between 95 and 106%. The method exhibited overall RSD(r) of 1.1% and RSD intermediate reproducibility from 2.5 to 6.0% in infant formulas and cereals. Comparison of results between total and free pantothenic acid showed that the analysis of free pantothenic acid gave a good estimation of total pantothenic acid in the range of products analyzed. The method provides reliable free pantothenic acid results in a wide range of fortified foods (infant and adult nutritionals, cereal products and beverages), and shows good correlation with the microbiological method AOAC Official Method 992.07. It is a more selective, faster, and robust alternative to microbiological determination.  相似文献   

4.
Choline is a water-soluble nutrient important for infants' brain and neural development. In infant formulas, choline is one of the important fortified nutrients. A single-laboratory validation study conducted an LC-electrospray ionization-MS/MS to determine total choline in infant formulas. Sample preparation was adopted from AOAC Official Method 999.14, and instrumental running conditions were optimized. The LOQ was 0.2 microg/100 g, which is significant for measuring total choline in infant formulas. Average recoveries for milk-, rice-, soybean-, and hydrolyzed protein-based samples ranged from 86.45 +/- 6.04% to 108.98 +/- 3.68%, with RSD less than 7%. The repeatability RSD (RSD(r)) range was 0.24-3.59% in within-day evaluation and 1.16-3.24% in day-to-day evaluation. Matrix effect was also investigated, and can be effectively eliminated by using an internal standard. Therefore, this method has high credibility, and could be used as a routine method of quality control, or for clinical studies and other research areas.  相似文献   

5.
A liquid chromatographic (LC) method was validated for the determination of total vitamin B6 in infant formula. Total vitamin B6 was quantified by converting the phosphorylated and free vitamers into pyridoxine. Pyridoxine was determined by ion pair reversed-phase LC with fluorescence detection. The method was subjected to an AOAC collaborative study involving a factory-manufactured, milk- and soy-based infant formula. Each was spiked at 3 concentrations in the range of 0-1 microg/g and sent as blind duplicate to participant laboratories. Nine laboratories returned valid data which were statistically analyzed for outliers and precision parameters. The repeatability relative standard deviation (RSD(r)) ranges were 2.0-4.0 and 3.5-5.9% for fortified milk- and soy-based formulas, respectively. The reproducibility relative standard deviation (RSD(R)) ranges were 8.2-8.4 and 6.7-11.2% for fortified milk- and soy-based formulas, respectively. HORRAT values ranged from 0.42 to 0.53, indicating that the precision of the method is acceptable. The mean RSD(r):RSD(R) values were 0.60 and 0.55 for milk- and soy-based formulas, respectively. As expected, RSDs for the unfortified samples were higher, but their HORRAT values (0.81 and 2.06) helped define a realistic limit of quantitation as 0.05 microg/g. Recovery data were quantitative and varied between 81.4 and 98.0% (mean = 89.8%) for each of 6 spiked materials.  相似文献   

6.
There is currently no official method for the analysis of fatty acids (including trans fatty acids) in infant formulas. AOAC Official Method 996.01 for Fat Analysis in Cereal Products was extended to the analysis of milk-based infant formula Standard Reference Material (SRM)1846 to determine its applicability for use with infant formulas. Following the analysis of SRM 1846, 2 infant formulas, one milk-based liquid and one soy-based powdered infant formula, were analyzed for total fatty acid composition. Fatty acid methyl esters were prepared and analyzed by gas chromatography. The results of the analysis of SRM 1846 show that the mean analyzed values were highly reproducible as indicated by low coefficients of variation (CV). The CVs were <5% for the major fatty acids. Mean analyzed values for individual fatty acids in SRM 1846 were within +/- 1 standard deviation of the certificate values. The analyzed value for total fat as triglycerides (26.27 +/- 0.25%) agreed well with the certificate value (27.1 +/- 0.59%). Analyses of infant formulas showed that the concentrations of linoleic acid and fat meet the requirements for such formulas.  相似文献   

7.
Health risk associated with dietary arsenic intake may be different for infants and adults. Seafood is the main contributor to arsenic intake for adults while terrestrial-based food is the primary source for infants. Processed infant food products such as rice-based cereals, mixed rice/formula cereals, milk-based infant formula, applesauce and puree of peaches, pears, carrots, sweet potatoes, green beans, and squash were evaluated for total and speciated arsenic content. Arsenic concentrations found in rice-based cereals (63-320 ng/g dry weight) were similar to those reported for raw rice. Results for the analysis of powdered infant formula by inductively coupled plasma-mass spectrometry (ICP-MS) indicated a narrow and low arsenic concentration range (12 to 17 ng/g). Arsenic content in puree infant food products, including rice cereals, fruits, and vegetables, varies from <1 to 24 ng/g wet weight. Sample treatment with trifluoroacetic acid at 100 degrees C were an efficient and mild method for extraction of arsenic species present in different food matrixes as compared to alternative methods that included sonication and accelerated solvent extraction. Extraction recoveries from 94 to 128% were obtained when the summation of species was compared to total arsenic. The ion chromatography (IC)-ICP-MS method selected for arsenic speciation allowed for the quantitative determination of inorganic arsenic [As(III) + As(V)], dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Inorganic arsenic and DMA are the main species found in rice-based and mixed rice/formula cereals, although traces of MMA were also detected. Inorganic arsenic was present in freeze-dried sweet potatoes, carrots, green beans, and peaches. MMA and DMA were not detected in these samples. Arsenic species in squash, pears, and applesauce were not detected above the method detection limit [5 ng/g dry weight for As(III), MMA, and DMA and 10 ng/g dry weight for As(V)].  相似文献   

8.
An inductively coupled plasma/MS method was developed for the simultaneous determination of Cr, Se, and Mo in infant formula and other nutritional products. All samples were digested using a closed vessel microwave oven system, together with Ni and Te internal standards. The practical quantitation limits for Cr, Se, and Mo were 0.4, 0.2, and 0.4 ng/mL, respectively; dilution factors were 250 for powders and 50 for liquids. The Cr, Se, and Mo concentrations in 10 nutritional products were within specification limits; within-day and day-to-day (6 independent days) precision values were <5% RSD. For two control samples, the observed precision was < or = 2% RSD over 10 independent days. Cr, Se, and Mo results were within the certified limits in three National Institute of Standards and Technology standard reference materials. The average sample spike recoveries for 10 nutritional products ranged from 93 to 107%. Robustness studies showed a minimal effect from concomitant easily ionized element concentrations. However, the choice of internal standard and matrix-matching carbon content were critical to obtaining accurate Se results. All indications are that this method would be a suitable candidate as a global reference method for the determination of these trace elements in infant formula, adult nutritionals, and other nutritional  相似文献   

9.
An inductively coupled plasma/MS method was developed for the simultaneous determination of Cr, Se, and Mo in infant formulas and other nutritional products. All samples were digested using a closed vessel microwave oven system, together with Ni and Te internal standards. The practical quantitation limits for Cr, Se, and Mo were 0.4, 0.2, and 0.4 ng/mL, respectively; dilution factors were 250 for powders and 50 for liquids. The Cr, Se, and Mo concentrations in 10 nutritional products were within specification limits, and within-day and day-to-day (6 independent days) precision values were <5% RSD. For two control samples, the observed precision was < or = 2% RSD over 10 independent days. In three National Institute of Standards and Technology standard reference materials, Cr, Se, and Mo results were within the certified limits. The average sample spike recoveries for 10 nutritional products ranged from 93 to 107%. Robustness studies showed a minimal effect from concomitant easily ionized element concentrations. However, the choice of internal standard and matrix matching carbon content were critical to obtaining accurate Se results. All indications are that this method would be a suitable candidate as a global reference method for the determination of these trace elements in nutritional products.  相似文献   

10.
An improved method has been developed for the determination of acrylamide in infant powdered milk and baby foods in jars, a particular class of foodstuffs which represent an important source of nutrition for young infants and babies. This method uses isotope dilution liquid chromatography coupled to a tandem mass spectrometer with electrospray ionization and is significantly more sensitive than previous published methods with a limit of quantification estimated at 1 microg kg(-1). The new method offers effective sample preparation procedures including defatting with petroleum ether, extraction with aqueous solution of sodium chloride, further liquid-liquid extraction with ethyl acetate and clean-up by solid-phase extraction (SPE) with HLB 200 mg cartridges. The analytical method was well validated and good results were obtained with respect to repeatability (RSD < 5%) and recovery (86-97%) which fulfilled the requirements defined by European Union (EU) legislation. The acrylamide level in infant powdered milk and baby foods in jars were 3.01-9.06 microg kg(-1) and 6.80-124.93 microg kg(-1), respectively. Especially, this new method is successfully applied to the trace quantification of acrylamide in infant/baby foods, the content of which is less than 10 microg kg(-1).  相似文献   

11.
A method is described for quantitating caffeine, theobromine, theophylline, paracetamol, propyphenazone, acetylsalicylic acid, salicylic acid, and codeine phosphate in corresponding real samples of food, beverages, natural products, pharmaceuticals, and cosmetic preparations by micellar electrokinetic capillary chromatography. The separation is carried out at 25 degrees C and 25 kV, using a 20mM phosphate buffer (pH 9.0), 80mM sodium dodecyl sulfate, and 7.5% (v/v) acetonitrile. UV detection is at 210 nm. The method is shown to be specific, accurate (recoveries over the range 98.9-101.2%), linear over the tested range (correlation coefficients >/= 0.9993), and precise (relative standard deviation below 2.1%). The method is applied for the quantitative analysis of these compounds in different foods, beverages, natural products, pharmaceuticals, and cosmetic products.  相似文献   

12.
Biomolecular interaction analysis was evaluated for the automated analysis of biotin- and folate-supplemented infant formulas and milk powders. The technique was configured as a biosensor-based, nonlabeled inhibition immunoassay using monoclonal antibodies raised against analyte-conjugate. Sample extraction conditions were optimized and antibodies were evaluated for cross-reactivity. Performance parameters included a quantitation range of 2-70 ng/mL, recoveries of 86-102%, agreement against assigned reference values for National Institute of Standards and Technology Standard Reference Material 1846, between-laboratory reproducibility relative standard deviation of 9.1% for biotin and 8.1% for folate, respectively, and equivalence against reference microbiological assay methods for both analytes.  相似文献   

13.
Arsenic exposure to humans is pervasive, and, increasingly, studies are revealing adverse health effects at ever lower doses. Drinking water is the main route of exposure for many individuals; however, food can be a significant source of arsenic to an individual, especially if their diet is rice-based. Infants are particularly susceptible to dietary exposure, since many first foods contain rice and they have a low body mass. Here we report on arsenic concentration and speciation in infant formulas and first foods. Speciation is essential for food analysis because of the much greater toxicity of inorganic arsenic species and the possibility that arsenic in food (unlike water) may be present in either inorganic or organic forms. Infant milk formulas were low in total arsenic (2.2-12.6 ng g(-1), n=15). Non-dairy formulas were significantly higher in arsenic than dairy-based formulas. Arsenic in formula was almost exclusively inorganic and predominantly arsenic(V). Arsenic concentration in purees (n=41) and stage 3 foods (n=18) ranged from 0.3-22 ng g(-1). Rice-fortified foods had significantly higher total arsenic concentrations than non rice-based foods. Again arsenic speciation was predominantly inorganic; arsenic(III) was the main species with lower concentrations of DMA and arsenic(V) also present. These data confirm that infants are exposed to arsenic via diet, and suggest that careful attention to diet choices may limit this.  相似文献   

14.
The applicability of AOAC Official Method 992.06, vitamin A (retinol) in milk-based infant formula can be extended to specialty infant formulas, and medical and adult nutritional products with a few minor modifications to the sample preparation procedure. Currently, AOAC Official Method 992.06 is only applicable to milk-based infant formulas containing >500 IU vitamin A per reconstituted quart. When this method is used as written to test specialty infant formulas, vitamin A recoveries are low compared to results generated with alternate validated vitamin A methods. AOAC Method 992.06 vitamin A recoveries can be improved significantly in specialty infant formulas if the amount of potassium hydroxide used during the saponification step is doubled. With this one minor modification to the sample preparation procedure, AOAC Method 992.06 demonstrates acceptable precision and accuracy for the quantitation of vitamin A (retinol) in specialty infant formulas, milk- and soy-based infant formulas, and adult and medical nutritionals. Because increasing the amount of potassium hydroxide can cause emulsions to form, 2-4 mL aliquots of reagent alcohol may need to be added to some samples to separate the organic and aqueous layers during the extraction step. A single-laboratory validation of these modifications was completed. During validation, 15 different product matrixes were analyzed. The intermediate precision averaged 2.70% RSD, and spike recovery data averaged 96.3%.  相似文献   

15.
A novel method for the simultaneous quantification of Vitamins A, D3 and E in fortified infant formulae has been developed using isocratic normal-phase liquid chromatography with positive atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). Food products were saponified and the vitamins were extracted by solid-phase extraction (SPE) on a Chromabond XTR cartridge. Quantification of Vitamins D3 and E were performed with Vitamin D2 and 5,7-dimethyltocol (DMT) as internal standards (IS), respectively while no IS was used for Vitamin A. Detection of the vitamins was made in the selected ion monitoring (SIM) mode. MS calibration curves were linear between 0.15 and 12 mg/l for Vitamin A, 5-400 microg/l for Vitamin D3 and 0.25-20 mg/l for Vitamin E with regression coefficient r2 > 0.996 and the limits of detection were below 1.4 ng. The repeatability (CV) obtained on a reference dietetic infant formula was 2.3% for Vitamin A, 2.6% for Vitamin E and 5.9% for Vitamin D3. The between-day variations (CV) over 6 days were in the ranges of 2.4-6.9% for the three vitamins. The mean recoveries from a reference infant formula spiked with all three vitamins ranged from 96 to 105% with a relative standard error less than 9%. The applicability of the method was demonstrated by analyzing a set of infant formula and infant cereals; similar results were obtained with the LC-MS method and reference HPLC methods.  相似文献   

16.
Twelve powdered and 13 liquid infant formulas were analyzed by using an extension of AOAC Official Method 996.01 for fat analysis in cereal products. Samples were hydrolyzed with 8 N HCl and extracted with ethyl and petroleum ethers. Fatty acid methyl esters were prepared by refluxing the mixed ether extracts with methanolic sodium hydroxide in the presence of 14% boron trifluoride in methanol. The extracts were analyzed by gas chromatography. In powdered formulas, saturated fatty acid (SFA) content (mean +/- SD; n = 12) was 41.05 +/- 3.94%, monounsaturated fatty acid (MUFA) content was 36.97 +/- 3.38%, polyunsaturated fatty acid (PUFA) content was 20.07 +/- 3.08%, and total trans fatty acid content was 1.30 +/- 1.27%. In liquid formulas, SFA content (mean +/- SD; n = 13) was 42.29 +/- 2.98%, MUFA content was 36.05 +/- 2.47%, PUFA content was 20.65 +/- 2.40%, and total trans fatty acid content was 0.88 +/- 0.54%. Total fat content in powdered formulas ranged from 4.4 to 5.5 g/100 kcal and linoleic acid content ranged from 868 to 1166 mg/100 kcal. In liquid formulas, total fat content ranged from 4.1 to 5.1 g/100 kcal and linoleic acid content ranged from 820 to 1100 mg/100 kcal. There were no significant differences between powdered and liquid infant formulas in concentrations of total fat, SFA, MUFA, PUFA, or trans fatty acids.  相似文献   

17.
In 1996, U.S. Food and Drug Administration regulations mandated the fortification of enriched cereal-grain products with folic acid, thereby emphasizing the need for validated methods for total folates in foods, particularly cereal products. The AOAC Official Methods (944.12, 960.46) currently used for the analysis of folate in foods for compliance purposes are microbiological methods. When the fortification regulations were finalized, no Official AOAC or Approved AACC methods for folate in cereal-grain products were in place. The AOAC Official Method (992.05) for folic acid in infant formula does not incorporate important improvements in the extraction procedure and was not considered suitable for the analysis of folates in foods in general. A microbiological assay protocol using a trienzyme extraction procedure was prepared and submitted for comments to 40 laboratories with recognized experience in folate analysis. On the basis of comments, the method was revised to have the conjugase (gamma-glutamyl-carboxy-peptidase) treatment follow a protease treatment, to include the use of cryoprotected inoculum, and to include the spectroscopic standardization of the standard and optional use of microtiter plates. Thirteen laboratories participated in a collaborative study of 10 required and 10 optional cereal-grain products, including flour, bread, cookies, baking mixes, and ready-to-eat breakfast cereals. The majority of the participating laboratories performed the assay by the standard test tube method; others used the microtiter plate modification for endpoint quantitation with equal success. For the required products, the relative standard deviation between laboratories (RSD(R)) ranged from 7.4 to 21.6% for 8 fortified (or enriched) products compared with expected (Horwitz equation-based) values of 11-20%. RSD(R) values were higher (22.7-52.9%) for 2 unfortified cereal-grain products. For the optional products, the RSD(R) ranged from 1.8 to 11.2% for 8 fortified products. RSD(R) values were higher (27.9-28.7%) for 2 unfortified cereal-grain products. Based on the results of the collaborative study, the microbiological assay with trienzyme extraction is recommended for adoption as Official First Action.  相似文献   

18.
A method was developed and validated for the determination of total iodine in a wide variety of food products and dietary supplements. The method involves a unique sample digestion with a KOH solution in an oven or by using an open-vessel microwave system. After digestion, a stabilizer is added and the solution is taken to volume, then filtered and analyzed either directly or after dilution. The amount of iodine is determined with inductively coupled plasma-mass spectrometry (ICP-MS). The method was validated by experiments to determine its precision, accuracy, linearity, specificity, ruggedness, and robustness. The LOQ of this method is 25-50 microg/kg. The method demonstrated an average RSD of 2.27% during analysis of milk powder and 4.30% during analysis of a dietary supplement tablet reference material. The accuracy of the method as determined with these same reference materials was 100 and 94.2%, respectively. The method has been used successfully on commodity foods, processed foods, dairy products, pet food, infant formula, animal feed, mineral premixes, and a variety of dietary supplements.  相似文献   

19.
A novel, sensitive and specific method for the quantification of alpha-tocopherol in two infant foods (milk and cereals) using liquid chromatography on-line with positive atmospheric pressure chemical ionisation mass spectrometry detection (LC/APCI-MS) has been developed. The samples were first saponified in order to eliminate fats and to transform tocopherol esters into free tocopherol, followed up by a liquid-liquid extraction of the analyte in petroleum benzine/diisopropyl ether (75:25, v/v) prior to injection onto the LC system. For the quantification, deuterium-labelled tocopherol was used as internal standard and the samples were monitored in selected ion monitoring (SIM) mode. Calibration curves between 1-40 microg/mL of alpha-tocopherol showed a good linear correlation (r(2) = 0.99994), and the detection limit was determined to be 2.5 ng/mL. The within-day and between-day precision were determined for several dietetic infant formulae and certified reference samples, and found to be below 3.5%. The accuracy determined on a Nestlé reference sample (milk powder) was calculated to be 115.2 +/- 1.2%, which confirms the robustness of the proposed method. This study shows that single quadrupole LC/MS can be applied for the quantification of vitamins in food and the method offers better sensitivity and selectivity than traditional method such as LC-UV. This would simplify the preparation of the food samples and consequently enhance the vitamin analysis throughput in the food area.  相似文献   

20.
An improved method for direct determination of available carbohydrates in low-level products has been developed and validated for a low-carbohydrate soy infant formula. The method involves modification of an existing direct determination method to improve specificity, accuracy, detection levels, and run times through a more extensive enzymatic digestion to capture all available (or potentially available) carbohydrates. The digestion hydrolyzes all common sugars, starch, and starch derivatives down to their monosaccharide components, glucose, fructose, and galactose, which are then quantitated by high-performance anion-exchange chromatography with photodiode array detection. Method validation consisted of specificity testing and 10 days of analyzing various spike levels of mixed sugars, maltodextrin, and corn starch. The overall RSD was 4.0% across all sample types, which contained within-day and day-to-day components of 3.6 and 3.4%, respectively. Overall average recovery was 99.4% (n = 10). Average recovery for individual spiked samples ranged from 94.1 to 106% (n = 10). It is expected that the method could be applied to a variety of low-carbohydrate foods and beverages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号