首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Supramolecular gels formed by the self-assembly of organic molecules are useful in many areas from materials to medicine. Of the different applications, exploitation of gels for the visual detection of analytes is a fairly recent trend in gel chemistry. Most of the gel-based sensors rely on non-covalent interactions between the gelator molecules and the added chemical analytes and therefore, often suffer from less selectivity and long response time. In this context, dosimetric gelator probes are superior to other gel-based sensors with high selectivity and fast response time. Unlike non-covalent binding sites, dosimetric gelators typically contain a reaction centre and undergo a specific chemical reaction selective to an analyte resulting in either formation or rupturing of covalent bonds. In this review, we provide an up-to-date report of various reaction-based gel systems applied for the sensing of analytes. We elaborately discuss the concept, design principles, self-assembly properties, and reaction mechanisms of such gelators. We also highlight the limitations, challenges, and the necessity of further exploration of dosimetric gels in this domain.  相似文献   

2.
Fluorescent conjugated polymers are an attractive basis for the design of low detection limit sensing devices owing to their intrinsic signal amplification capability. A simple and universal method to rationally control or fine-tune the chemodetection selectivity of conjugated polymer materials toward a desired analytical target would further benefit their applications. In a quest of such a method we investigated a general approach to cross-linked molecularly imprinted fluorescent conjugated polymer (MICP) materials that possess an intrinsic capability for signal transduction and have potential to enhance selectivity and sensitivity of sensor devices based on conjugated polymers. To study these capabilities, we prepared an MICP material for the detection of 2,4,6-trinitrotoluene and related nitroaromatic compounds. We found the imprinting effect in this material to be based on analyte shape/size recognition being substantial and generally overcoming other competing thermodynamically determined trends. The described molecularly imprinted fluorescent conjugated polymers show remarkable air stability and photostability, high fluorescence quantum yield, and reversible analyte binding and therefore are advantageous for sensing applications due to the ability to "preprogram" their detection selectivity through a choice of an imprinted template.  相似文献   

3.
The advent of methods for the construction of supramolecular assemblies provides a route to exploring the benefits of artificial allosteric catalysts. To expand our ability to control reactions using supramolecular catalysts capable of changing shape in response to chemical input signals, we report the development and high yield syntheses of multidomain modular supramolecular catalysts. These structures can be chemically interconverted between relatively inactive and catalytically active states depending on their shape. Furthermore, this class of supramolecular catalysts can be made to respond to a range of analytes via the introduction of specific structure control elements responsible for binding analyte molecules. Herein, we describe several of these catalysts and their ability to regulate acyl transfer reactions allosterically. In addition, the generality of this approach to signal amplification and detection is examined by incorporating the acyl transfer reaction into a small molecule detection scheme consisting of (i) analyte binding to structure control sites of the catalytic supramolecular assemblies, (ii) enhanced catalytic activity turned on by the resulting shape change, thereby allowing for signal amplification of the binding event, and (iii) signal detection by analysis of the products of the catalytic reaction.  相似文献   

4.
Reactive oxygen species (ROS) have captured the interest of many researchers in the chemical, biological, and medical fields since they are thought to be associated with various pathological conditions. Fluorescent probes for the detection of ROS are promising tools with which to enhance our understanding of the physiological roles of ROS, because they provide spatial and temporal information about target biomolecules in in vivo cellular systems. ROS probes, designed to detect specific ROS with a high selectivity, would be desirable, since it is now becoming clear that each ROS has its own unique physiological activity. However, dihydro-compounds such as 2′,7′-dichlorodihydrofluorescein (DCFH), which have traditionally been used for detecting ROS, tend to react with a wide variety of ROS and are not completely photostable. Some attractive fluorescent probes that exhibit a high degree of selectivity toward specific ROS have recently been reported, and these selective probes are expected to have great potential for elucidating unknown physiological mechanisms associated with their target ROS. This review focuses on the design, detection mechanism, and performance of fluorescent probes for the detection of singlet oxygen (1O2), hydrogen peroxide (H2O2), hydroxyl radicals (.OH), or superoxide anion (O2 −.), a field in which remarkable progress has been achieved in the last few years.  相似文献   

5.
Reliable sensing of structurally similar anions in water is a difficult problem, and analytical tests and sensor devices for reliable sensing of multiple anions are very rare. This study describes a method for fabrication of simple colorimetric array-based assays for aqueous anion solutions, including complex analytes encountered in real-life applications. On the fundamental level, this method shows how the discriminatory capacity of sensor arrays utilizing pattern recognition operating in multianalyte environments may be dramatically improved by employing two key features. The synergy between the sensor and hydrogel host resembles the cooperative effects of an apoenzyme and cofactor: the host hydrogel helps extract the target anions from the bulk analyte while stripping the solvate molecules off the anions. In addition, the supramolecular studies of the affinity and selectivity of the potential sensors for target analytes allow for constructing an array predesigned for a particular analyte. To illustrate both aspects, an eight-sensor array utilizing colorimetric sensor materials showing selectivity for fluoride and pyrophosphate while displaying significant cross-reactivity for other anions such as carboxylates, phosphate, or chloride was used to differentiate between 10 anions. The quantitative analyses were also performed to show that the eight-sensor array was found to operate across 4 orders of magnitude concentrations (0.20-360 ppm; 10 microM to 20 mM). The applicability of this approach was demonstrated by analyzing several toothpaste brands. The toothpastes are complex analytes comprising both known and unknown anions in various concentrations. The fluoride-selective yet cross-reactive array is shown to utilize the fluoride content as the main differentiating factor while using the remaining anionic components for further differentiation between toothpaste brands.  相似文献   

6.
Nature has inspired an emergent supramolecular field of synthetic receptor arrays and assays for the pattern-based recognition of various bioanalytes and metal species. The synthetic receptors are not necessarily selective for a particular analyte, but the combined signal response from the array is diagnostic for the analyte. This tutorial review describes recent work in the literature for this emerging supramolecular field and details basic array and assay design principles. We review the analytes targeted, signaling types used, and pattern recognition.Developing specific receptors for the solution-based analysis of complex analytes and mixtures is a daunting task. A solution to this difficult task has been inspired by nature's use of arrays of receptors in the senses of taste and smell. An emerging field within supramolecular chemistry is the use of synthetic and readily available receptors in array formats for the detection of analytes in solution. Each receptor in a differential array does not necessarily have selectivity for a particular analyte, but the combined fingerprint response can be extracted as a diagnostic pattern visually, or using chemometric tools. This new genre of molecular recognition is advancing rapidly with several groups developing novel array platforms and receptors.  相似文献   

7.
Tracking pH with spatiotemporal resolution is a critical challenge for synthetic chemistry, chemical biology and beyond. Over the last decade, different small probes and supramolecular systems have emerged for in cellulo or in vivo pH tracking. However, pH reporting still presents critical limitations, such as background reduction, improved sensor stability, cell targeting, endosomal escape, near- and far-infrared ratiometric pH tracking and adaption to new imaging techniques (i.e., super-resolution). These challenges will require the combined efforts of synthetic and supramolecular chemistry working together to develop the next generation of smart materials that will resolve current limitations. Herein, recent advances in the synthesis of small fluorescent probes, together with new supramolecular functional systems employed for pH tracking, are described with an emphasis on ratiometric probes. The combination of organic synthesis and stimuli-responsive supramolecular functional materials will be essential to solve future challenges of pH tracking, such as improved signal to noise ratio, on target activation and microenvironment reporting.  相似文献   

8.
将核酸外切酶Ⅲ诱导的双重信号放大技术与MoS2纳米片的荧光猝灭性质结合,构建了一种高灵敏高选择性的DNA检测方法.首先设计两条末端修饰荧光基团的探针核酸(HP1和HP2).由于两条探针核酸具有3'粘性末端,使其不会被核酸外切酶Ⅲ降解,因而被吸附于MoS2纳米片而猝灭其荧光.当目标DNA存在时,会促使核酸外切酶Ⅲ启动双重信号放大反应,并将探针核酸降解成大量的不能吸附于MoS2纳米片表面的荧光碎片.在优化条件下,目标DNA浓度在0.5~6.0 pmol/L范围内与荧光信号变化呈良好的线性关系,检出限为0.28 pmol/L.与单重信号放大技术相比,本方法极大改善了分析灵敏度和检出限,且具有良好的单碱基错配区分能力.  相似文献   

9.
The development of highly sensitive fluorescent probes in combination with innovative optical techniques is a promising strategy for intravital noninvasive quantitative imaging. Cyanine fluorochromes belong to a superfamily of dyes that have attracted substantial attention in probe design for molecular imaging. We have developed a novel paradigm to introduce a Turn-ON mechanism in cyanine molecules, based on a distinctive change in their π-electrons system. Our new cyanine fluorochrome is synthesized through a simple two-step procedure and has an unprecedented high fluorescence quantum yield of 16% and large extinction coefficient of 52,000 M(-1)cm(-1). The synthetic strategy allows one to prepare probes for various analytes by introducing a specific triggering group on the probe molecule. The probe was equipped with a corresponding trigger and demonstrated efficient imaging of endogenous hydrogen peroxide, produced in an acute lipopolysaccharide-induced inflammation model in mice. This approach provides, for the first time, an available methodology to prepare modular molecular Turn-ON probes that can release an active cyanine fluorophore upon reaction with specific analyte.  相似文献   

10.
Abstract

On-line or off-line oxidations of various alcohols, aldehydes, and ketones can now be performed in conjunction with high performance liquid chromatography (HPLC), utilizing a newly developed polymeric permanganate solid phase reactor (SPR). These derivatization reactions are compatible with most reversed phase and normal phase solvents for HPLC separations, and many of these oxidations can be accomplished in real-time, on-line, at or above room temperature. Such HPLC-SPR approaches for chemical modifications and derivatizations of various oxidizable analytes provide a useful and quite practical newer approach for the HPLC-ultraviolet (UV) detection of appropriate analyte species. Difference chromatography, often with improved UV detection, can be used to confirm the suspected presence of a particular oxidizable analyte in a complex sample matrix. All of these solid phase derivatizations utilize conventional, commercially available HPLC instruments and accessories. These HPLC-SPR oxidation methods for chemical derivatization have also been applied to certain real world samples, in order to demonstrate the overall value and applicability of such analytical approaches.  相似文献   

11.
荧光化学剂量计由于可以和目标分析物发生不可逆的化学反应、对分析物表现出较高的选择性等特点受到了极大的关注.本文将荧光化学剂量计的概念以及近几年来荧光化学剂量计在汞离子检测方面的应用进行了综述,并对今后的发展趋势进行了展望.  相似文献   

12.
Electrospray ionization mass spectrometry is a critically important technique for the determination of small molecules, but its application for this purpose is complicated by its selectivity. For positive ion ESI-MS analysis of basic analytes, several investigators have pointed to the importance of analyte basicity as a source of selectivity. Currently, however, it is not known whether basicity in the gas phase or in solution is ultimately most important in determining responsiveness. The objective of these studies was to investigate the relative importance of basicity in solution and in the gas phase as factors that predict selectivity in positive ion ESI-MS analysis. ESI-MS response was compared for a diverse series of protonatable analytes in two different solvents, neat methanol and methanol with 0.5% acetic acid. A correlation was observed between analyte pK(b) and electrospray response. However, the response for the analytes with very high pK(b) values was significantly higher than would be expected based on concentration of the protonated form or the analyte in solution, and this higher response did not appear to result from gas-phase proton transfer reactions. Although all of the analytes investigated had higher gas-phase basicities than the solvent, their relative responses were not dictated by gas-phase basicity. Higher response was observed for all of the analytes studied in acidified methanol compared with neat methanol, and this higher response was most pronounced for weakly basic analytes. These findings support the use of analyte pK(b) for rational method development in ESI-MS analysis of small molecules.  相似文献   

13.
姚倩芳  程文玉  尹梅贞 《应用化学》2017,34(12):1344-1354
针对环境污染源的早期检测和疾病的预防与治疗已经研究开发出许多检测技术手段,其中,荧光探针作为一种方便、灵敏、可视化的检测技术得到了广泛关注与认可。大环分子荧光探针作为一类重要的荧光探针逐渐引起了研究者的关注。大环分子具有特定尺寸、可特异性配合某些基团的空腔。因此,在设计这类荧光探针时可以充分利用大环分子的空腔优势。此外,大环分子容易通过化学修饰制备多种功能化衍生物,这也为设计大环荧光探针提供了更多选择。本文回顾了大环分子荧光探针的设计策略,主要从探针的化学组成以及相互作用机理来阐述,为大环分子荧光探针的设计提供了系统的理论指导。  相似文献   

14.
Two red-emitting dicyanomethylene-4H-pyran (DM) based fluorescent probes were designed and used for peroxynitrite (ONOO) detection. Nevertheless, the aggregation-caused quenching effect diminished the fluorescence and restricted their further applications. To overcome this problem, tetraphenylethylene (TPE) based glycoclusters were used to self-assemble with these DM probes to obtain supramolecular water-soluble glyco-dots. This self-assembly strategy enhanced the fluorescence intensity, leading to an enhanced selectivity and activity of the resulting glyco-dot comparing to DM probes alone in PBS buffer. The glyco-dots also exhibited better results during fluorescence sensing of intracellular ONOO than the probes alone, thereby offering scope for the development of other similar supramolecular glyco-systems for chemical biological studies.  相似文献   

15.
《结构化学》2019,38(10)
Biothiols such as cysteine(Cys), homocysteine(Hcy) and glutathione(GSH) act as critical roles in maintaining biological redox homeostasis, which is crucial for a plenty of physiological and pathological processes. Therefore, the detection of biothiols is very important and beneficial for many applications. Herein, we have designed and developed a new crystal dimethyl 4-(2,4-dinitrophenylsulfonyloxy)pyridine-2,6-dicarboxylate(P) with 2,4-dinitrobenzene-1-sulfonyl(DNBS) pendant for light-up and detection of biothiols(Cys was selected as the analyte model). The fluorescence "off-on" switch is triggered by the cleavage of DNBS unit by the interaction with biothiols via nucleophilic aromatic substitution reaction. The turn-on fluorescent probe exhibited excellent selectivity and sensitivity toward biothiols.  相似文献   

16.
Fluorescent indicators based on BODIPY   总被引:1,自引:0,他引:1  
This critical review covers the advances made using the 4-bora-3a,4a-diaza-s-indacene (BODIPY) scaffold as a fluorophore in the design, synthesis and application of fluorescent indicators for pH, metal ions, anions, biomolecules, reactive oxygen species, reactive nitrogen species, redox potential, chemical reactions and various physical phenomena. The sections of the review describing the criteria for rational design of fluorescent indicators and the mathematical expressions for analyzing spectrophotometric and fluorometric titrations are applicable to all fluorescent probes (206 references).  相似文献   

17.
Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.  相似文献   

18.
A truncated approach to the design of molecular probes from small molecule libraries is outlined, based upon the incorporation of a bioorthogonal marker. The applicability of this strategy to small molecule chemical genetics screens has been demonstrated using analogues of the known stress activated protein kinase (SAPK) pathway activator, anisomycin. Compounds marked with a propargyl group have shown activation of the SAPK pathways comparable to that induced by their parent structures, as demonstrated by immunoblot assays against the downstream target JNK1/2. The considerable advantages of this new approach to molecular probe design have been illustrated through the rapid development of a functionally active fluorescent molecular probe, through coupling of the marked analogues to fluorescent azides using the copper(i)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. Active molecular probes generated in this study were used to investigate cellular uptake through FACS analysis and confocal microscopy.  相似文献   

19.
Three end-capped para-benzoyl calixarene bonded silica gel stationary phases are prepared and characterized by elemental analysis, infrared spectroscopy, and thermal analysis. The comparison and selectivity of these phases are investigated by using PAHs, disubstituted benezene, and naphthalene positional isomers as probes. Possible separation mechanism based on the different interactions between calixarenes and analytes are discussed. The results indicate that the separation for those analytes are influenced by the supramolecular interaction including π-π interaction, π-electron transfer interactions, space steric hindrance, and hydrogen bonding interaction on the calixarene columns. Importantly, the aromatic probes with polar groups such as -OH, -NO(2), and -NH(2) could regulate the selectivity of calixarene-bonded stationary phases.  相似文献   

20.
The retention mechanism and chromatographic behavior for different polar analytes under hydrophilic interaction chromatography (HILIC) conditions have been studied by application of different mobile phases and stationary phases to various analytes at different temperatures. In addition to the commonly accepted mechanism of analyte liquid-liquid partitioning between mobile phase and water-enriched solvent layer which is partially immobilized onto the surface of the stationary phase, hydrogen-bonding, hydrophobic interaction, and ion-exchange interactions may also be involved. The predominant retention mechanism in HILIC separation is not always easily predictable. It can depend not only on the characteristics of the analytes but also on the selection of mobile and stationary phase compositions. The objective of this review is to evaluate the potential application of column temperature and mobile phase composition toward improving HILIC selectivity. The functional groups from analyte structures, stationary phase materials and organic mobile phase solvents will be highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号