首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction of O(3P) with CF3NO (k2) as a function of temperature. Our results are described by the Arrhenius expression k2(T) = (4.54 ± 0.70) × 10?12 exp[(?560± 46)/T] cm3molecule?1 s?1 (243 K ? T ? 424 K); errors are 2σ and represent precision only. The O(3P) + CF3NO reaction is sufficiently rapid that CF3NO cannot be employed as a selective quencher for O2(a1Δg) in laboratory systems where O(3P) and O2(a1Δg) coexist, and where O(3P) kinetics are being investigated. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The reaction of O2(1Δg) with HO2(X?) was studied in an isothermal flow reactor in the pressure range 7?p? 10.7 mbar at temperatures between 299?T? 423 K. H-atom production was observed in the reaction O2(1Δg) + HO22A′) - H(2S)+ 2O2 (3Σg?). The rate of this reaction (k1) is estimated to be k1 = (1 ± 0.5) × 1014 CM3 Mol?1 s?1. The implications of this reaction to recent determinations of the rate of the reaction H + O2(1Δg) are discussed.  相似文献   

3.
Abstract— Tris (2,2'-bipyridyl)ruthenium(II)chloride hexahydrate (Ru[bpy]32+) free in solution and adsorbed onto antimony-doped SnO2 colloidal particles was used as a photosensitizer for a comparison of the O2(1Δg) and electron-transfer-mediated photooxidation of tryptophan (TRP), respectively. Quenching of excited Ru(bpy)32+ by O2(3σg?) in an aerated aqueous solution leads only to the formation of O2(1Δg) (φ4= 0.18) and this compound was used as a type II photosensitizer. Excitation of Ru(bpy)32+ adsorbed onto Sb/SnO2 results in a fast injection of an electron into the conduction band of the semiconductor and accordingly to the formation of Ru(bpy)32+ and was used for the sensitization of the electron-transfer-mediated photooxidation. The Ru(bpy)33+ is reduced by TRP with a bimolecular rate constant kQ= 5.9 × 108M?1 s?1, while O2(1Δg) is quenched by TRP with kt= 7.1 × 107M?1 s?1 (chemical + physical quenching). Relative rate constants for the photooxidation of TRP (kc) via both pathways were determined using fluorescence emission spectroscopy. With Np, the rate of photons absorbed, being constant for both pathways we obtained kc= (372/Np) M?1 s?1 for the O2(1Δg) pathway and kc≥ (25013/Np) M?1 s?1 for the electron-transfer pathway, respectively. Thus the photooxidation of Trp is more than two orders of magnitude more efficient when it is initiated by electron transfer than when initiated by O2(1Δg).  相似文献   

4.
Rate coefficients for the collisional quenching of O2*(1Δg) by NO and CO2 at 2–8 torr and 300 K have been determined. kNO = (2.48 ± 0.23) × 10?17 cm3 molecule?1 s?1 and
= (2.56 ± 0.12) × 10?18 cm3 molecule?1 s?1.  相似文献   

5.
The reactions of electrically dicharged nitrogen and hydrogen with O2(1Δg) is probabnly slower than with ground state O2. ON the other hand, the reaction of H-atoms with O2(1Δg) was found to occur with a rate constant k=(2,5±0.5)× 10?14 cm3 molecule?1 sec?1, although it was not posible to establish whether the reaction produced OH radicals or simply represented physical quenching.  相似文献   

6.
The reaction of atomic hydrogen with O2(1Δg) has been investigated as a function of temperature, using a fast discharge-flow apparatus equipped for EPR detection of free radical species. The rate constant for the overall reaction was measured as (1.46 ± 0.49) × 10?11 exp(-4000 ± 200 cal/mol/RT) cm3/s. Evidence is presented which suggests that the reaction occurs principally via abstraction, H + O2(1Δg) → OH + O, rather than via physical quenching, H + O2(1Δg) → H + O2(X3Σg?).  相似文献   

7.
The diffusion coefficient of O*2(1Δg) in O2(3Σ?g) has been measured as a function of pressure, D* = 0.201 ± 0.005 cm2 s?1 at 1 atmosphere and 298 K.  相似文献   

8.
A comparison has been made of the value of the rate constant for the simultaneous “dimol” emission of O2(1Δg), calculated from the absorption spectrum, with those from emission measurements. It is suggested that the emitting (O2)2 species has D2h symmetry and that the transition is 1B2u-1Ag. The best value is k = (3.3 ± 0.6) × 10?2 dm3 mol?1 s?1 at 295 K. The temperature dependence is also discussed.  相似文献   

9.
The laser photolysis‐laser‐induced fluorescence method was used for measuring the kinetic parameters of the reaction of OH radicals with CF3CH2OCH2CF3 (2,2,2‐trifluoroethyl ether), in the temperature range of 298–365 K. The bimolecular rate coefficient at 298 K, kII(298), was measured to be (1.47 ± 0.03) × 10?13 cm3 molecule?1 s?1, and the temperature dependence of kII was determined to be (4.5 ± 0.8) × 10?12exp [?(1030 ± 60)/T] cm3 molecule?1 s?1. The error quoted is 1σ of the linear regression of the respective plots. The rate coefficient at room temperature is very close to the average of the three previous measurements, whereas the values of Ea/R and the A‐factor are higher than the two previously reported values. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 519–525, 2010  相似文献   

10.
The quenching rate constants of O2(1Δg) with n-butylamine, diethylamine, dipropylamine, dibutylamine, and tripropylamine have been determined in a discharge flow system. The rate constants are found to be (1.6 ± 0.2) × 103, (8.5 ± 0.6) × 104, (9.8 ± 0.5) × 104, (2.1 ± 0.1) × 105, and (8.6 ± 0.5) × 105 1 mol?1 s?1, respectively. The rate constants are found to increase in the order, tertiary amine → secondary amine → primary amine. The “inductive effect” of alkyl substitution is also found to increase the rate constant in a given series of amines.  相似文献   

11.
Relaxation rates for O2(1Σg+) by nonradiative pathways have been determined using the fast-flow technique. O2(1Σg+) is formed from O2(1Δg) by an energy pooling process. O2(1Δg) is generated by passing purified oxygen through a microwave discharge. Oxygen atoms are removed by distilling mercury vapor through the discharge zone. It has been observed that the wall loss rate for O2(1Σg+) decreases with increasing pressure of oxygen and thus appears to be diffusion controlled. Quenching rate constants for O2, N2, and He have been determined and found to be (1.5 ± 0.1) × 104, (1.0 ± 0.05) × 106 and (1.2 ± 0.1) × 105 l./mol·sec, respectively.  相似文献   

12.
The generation of metastable O2(1Σg+) and O2(1Δg) in the H + O2 system of reactions was studied by the flow discharge chemiluminescence detection method. In addition to the O2(1Σg+) and O2(1Δg) emissions, strong OH(v = 2) → OH(v = 0), OH(v = 3) → OH(v = 1), HO2(2A000) → HO2(2A000), HO2(2A001) → HO2(2A000), and H O2(2A200) → HO2(2A000) emissions were detected in the H + O2 system. The rate constants for the quenching of O2(1Σg+) by H and H2 were determined to be (5.1 ± 1.4) × 10?13 and (7.1 ± 0.1) × 10?13 cm3 s?1, respectively. An upper limit for the branching ratio to produce O2(1Σg+) by the H + HO2 reaction was calculated to be 2.1%. The contributions from other reactions producing singlet oxygen were investigated.  相似文献   

13.
In the present work, kinetics of tartrazine decay by UV irradiation and H2O2 photolysis, and the removal of total organic carbon (TOC) under specific experimental conditions was explored. Irradiation experiments were carried out using a photoreactor of original design with a low-pressure Hg vapour lamp. The photodegradation rate of tartrazine was optimised with respect to the H2O2 concentration and temperature for the constant dye concentration of 1.035 × 10?5 M. Tartrazine degradation and the removal of TOC followed the pseudo-first-order kinetics. The much higher k obs value for tartrazine degradation (7.91 × 10?4 s?1) as compared with the TOC removal (2.3 × 10?4 s?1) confirmed the presence of reaction intermediates in the solution.  相似文献   

14.
The kinetics of the C2H5 + Cl2, n‐C3H7 + Cl2, and n‐C4H9 + Cl2 reactions has been studied at temperatures between 190 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time‐resolved measurements to obtain reaction rate coefficients under pseudo‐first‐order conditions. The bimolecular rate coefficients of all three reactions are independent of the helium bath gas pressure within the experimental range (0.5–5 Torr) and are found to depend on the temperature as follows (ranges are given in parenthesis): k(C2H5 + Cl2) = (1.45 ± 0.04) × 10?11 (T/300 K)?1.73 ± 0.09 cm3 molecule?1 s?1 (190–359 K), k(n‐C3H7 + Cl2) = (1.88 ± 0.06) × 10?11 (T/300 K)?1.57 ± 0.14 cm3 molecule?1 s?1 (204–363 K), and k(n‐C4H9 + Cl2) = (2.21 ± 0.07) × 10?11 (T/300 K)?2.38 ± 0.14 cm3 molecule?1 s?1 (202–359 K), with the uncertainties given as one‐standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±20%. Current results are generally in good agreement with previous experiments. However, one former measurement for the bimolecular rate coefficient of C2H5 + Cl2 reaction, derived at 298 K using the very low pressure reactor method, is significantly lower than obtained in this work and in previous determinations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 614–619, 2007  相似文献   

15.
Chemiluminescence is observed from DN3 at pressures below 100 mtorr following irradiation with the focused output of a CO2 TEA laser. Emission is attributed to ND2(2AI) formed in the reaction ND(a1Δ) + DN3 → ND2 (2A1) + N3. The ND(a1Δ) is produced in the primary photolysis. Time resolved studies of the fluorescence permit determination of the rate constant for the chemiluminescent reaction (2.09 ± 0.31 μs?1 torr?1). Multiphoton dissociation of HN3 by use of a laser wavelength coincident with a hot band absorption is also demonstrated.  相似文献   

16.
The known O2(1?g)‐sensitizer system Chitosan bounded Rose Bengal (CH‐RB), with Rose Bengal (RB) immobilized by irreversible covalent bonding to the polymer Chitosan (CH), soluble in aquous acidic medium, was employed in the photodegradation of three tri‐hydroxy benzene water‐contaminants (THBs). The system sensitizes the O2(1?g)‐mediated photodegradation of THBs by a process kinetically favored, as compared to that employing free RB dissolved in the same solvent. Additionally the free xanthene dye, degradable by O2(1?g) through self‐sensitization upon prolonged light‐exposure, is considerably protected when bonded to CH‐polymer. The polymeric sensitizer, totally insoluble in neutral medium, can be removed from the solution after the photodegradative cycle by precipitation through a simple pH change. This fact constitutes an interesting aspect in the context of photoremediation of confined polluted waters. In other words, the sensitizing system could be useful for avoiding to dissolve dyestuffs in the polluted waters, in order to act as conventional sunlight‐absorbing dye‐sensitizers. In parallel the interaction CH ‐ O2(1?g) in acidic solution was evaluated. The polymer quenches the oxidative species with a rate constant 2.4 × 108 M?1 s?1 being the process mostly attributable to a physical interaction. This fact promotes the photoprotection of the bonded dye in the CH‐RB polymer.  相似文献   

17.
Absolute rate constants are measured for the reactions: OH + CH2O, over the temperature range 296–576 K and for OH + 1,3,5-trioxane over the range 292–597 K. The technique employed is laser photolysis of H2O2 or HNO3 to produce OH, and laser-induced fluorescence to directly monitor the relative OH concentration. The results fit the following Arrhenius equations: k (CH2O) = (1.66 ± 0.20) × 10?11 exp[?(170 ± 80)/RT] cm3 s?1 and k(1,3,5-trioxane) = (1.36 ± 0.20) × 10?11 exp[?(460 ± 100)/RT] cm3 s?1. The transition-state theory is employed to model the OH + CH2O reaction and extrapolate into the combustion regime. The calculated result covering 300 to 2500 K can be represented by the equation: k(CH2O) = 1.2 × 10?18 T2.46 exp(970/RT) cm3 s?1. An estimate of 91 ± 2 kcal/mol is obtained for the first C? H bond in 1,3,5-trioxane by using a correlation of C? H bond strength with measured activation energies.  相似文献   

18.
Reactions of HCCCO and NCCO radicals with O2 have been studied by a combination of pulsed laser photolysis and photoionization mass spectrometry. HCCCO was produced by 193‐nm photolysis of methylpropiolate or 3‐butyn‐2‐one, and NCCO was formed by 193‐nm photolysis of acetylcyanide. The rate constants obtained at 298 ± 3 K were (6.5 ± 0.7) × 10?12 cm3 molecule?1 s?1 for the HCCCO + O2 reaction, and no pressure dependence was observed between 1.5 and 16 Torr of N2 as a bath gas. Because HCO and HCCO radicals were observed as reaction products, it was confirmed that the reaction proceeds by a two‐body reaction. On the other hand, the rate constants of NCCO with O2 depended on the total pressure and were (5.4–8.8) × 10?13 cm3 molecule?1 s?1 for total pressures 2.0–15.5 Torr of N2, confirming that the reaction proceeds by a three‐body process. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 440–448, 2001  相似文献   

19.
Triplet vinylidene radicals, produced in the vacuum-ultraviolet photolysis of acetylene, are observed in absorption at 137.4 nm. The lifetime in the presence of helium, for both the protonated and deuterated species, has been determined. Expressed as a bimolecular rate constant the values are kHeH = (1.3 ± 0.3) × 10?14 cm3 molecule?1 s?1 and kHeD = (2.4 ± 0.4 × 10?15 cm3 molecule?1 s?1. An upper limit for removal by acetylene has been deduced.  相似文献   

20.
Time-resolved thermal-lensing was used to measure the absolute quantum yield (φΔ) of singlet molecular oxygen, O2(1Δg), produced by hematoporphyrin photosensitization in ethanol. Deuteration of the solvent did not affect the value of φΔ. The value of φΔ= 0.53 was then used as reference to evaluate φΔ in O2 (1Δg) phosphorescence experiments with the related porphyrins, monohydroxyethylvinyl deuteroporphyrin and dihematoporphyrin ether. The φΔ values, in conjunction with the respective quantum yields of intersystem crossing (measured using a nanosecond laser flash photolysis technique) served to evaluate efficiencies, SΔ, of O2 (1Δg) production from the porphyrin triplet states. The lifetime TΔ in monodeuterated ethanol was measured as 29 ± 3 μs and 30 ± 1 (xs by time-resolved thermal lensing and phosphorescence detection, respectively. TΔ in ethanol and fully deuterated ethanol were in good agreement with values reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号