首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, DGP model of brane-gravity is analysed and compared with the standard general relativity and Randall-Sundrum cases using non-linear equation of state. Phantom fluid is known to violate the weak energy condition. In this paper, it is found that this characteristic of phantom energy is affected drastically by the negative brane-tension λ of the RS-II model. It is found that in DGP model strong energy condition (SEC) is always violated and the universe accelerates only where as in RS-II model even SEC is not violated for 1<ρ/λ<2 and the universe decelerates.  相似文献   

2.
When the Brans-Dicke theory is formulated in terms of the Jordan scalar field φ, the amount of dark energy is related to the mass of this field. We investigate a solution which is relevant to the late universe. We show that if φ is taken to be a complex scalar field, then an exact solution to the vacuum equations requires that the Friedmann equation possesses both a constant term and one which is proportional to the inverse sixth power of the scale factor. Possible interpretations and phenomenological implications of this result are discussed.  相似文献   

3.
A new dark energy model called “ghost dark energy” was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ D  = α H, where α is a constant of order LQCD3{\Lambda_{\rm QCD}^3} and ΛQCD ~ 100 MeV is QCD mass scale. In this Letter, we extend the ghost dark energy model to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We study cosmological implications of this model in detail. In the absence of interaction the equation of state parameter of ghost dark energy is always w D > −1 and mimics a cosmological constant in the late time, while it is possible to have w D < −1 provided the interaction is taken into account. When k = 0, all previous results of ghost dark energy in flat universe are recovered. For the observational test, we use Supernova type Ia Gold sample, shift parameter of cosmic microwave background radiation and the correlation of acoustic oscillation on the last scattering surface and the baryonic acoustic peak from Sloan Digital Sky Survey are used to confine the value of free parameter of mentioned model.  相似文献   

4.
We have investigated general Bianchi type I cosmological models which containing a perfect fluid and dark energy with time varying G and Λ that have been presented. The perfect fluid is taken to be one obeying the equation of state parameter, i.e., p=ωρ; whereas the dark energy density is considered to be either modified polytropic or the Chaplygin gas. Cosmological models admitting both power-law which is explored in the presence of perfect fluid and dark energy too. We reconstruct gravitational parameter G, cosmological term Λ, critical density ρ c , density parameter Ω, cosmological constant density parameter Ω Λ and deceleration parameter q for different equation of state. The present study will examine non-linear EOS with a general nonlinear term in the energy density.  相似文献   

5.
In this paper, we consider generalized holographic and Ricci dark energy models where the energy densities are given as ρ R =3c 2 M pl2 Rf(H 2/R) and ρ h =3c 2 M pl2 H 2 g(R/H 2), respectively; here f(x), g(y) are positive defined functions of the dimensionless variables H 2/R or R/H 2. It is interesting that holographic and Ricci dark energy densities are recovered or recovered interchangeably when the function f(x)=g(y)≡1 or f(x)=Id and g(y)=Id are taken, respectively (for example f(x),g(x)=1−ε(1−x), ε=0or1, respectively). Also, when f(x)≡xg(1/x) is taken, the Ricci and holographic dark energy models are equivalent to a generalized one. When the simple forms f(x)=1−ε(1−x) and g(y)=1−η(1−y) are taken as examples, by using current cosmic observational data, generalized dark energy models are considered. As expected, in these cases, the results show that they are equivalent (ε=1−η=1.312), and Ricci-like dark energy is more favored relative to the holographic one where the Hubble horizon was taken as an IR cut-off. And the suggested combination of holographic and Ricci dark energy components would be 1.312R−0.312H 2, which is 2.312H2+1.312[(H)\dot]2.312H^{2}+1.312\dot{H} in terms of H 2 and [(H)\dot]\dot{H} .  相似文献   

6.
The present study deals with dissipative future universe without big rip in context of Eckart formalism. The generalised Chaplygin gas, characterised by equation of state p=-\fracAr\frac1ap=-\frac{A}{\rho^{\frac{1}{\alpha}}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late time. It is demonstrated that, if the cosmic dark energy behaves like a fluid with equation of state p=ωρ; ω<−1 as well as Chaplygin gas simultaneously then the big rip problem does not arise and the scale factor is found to be regular for all time.  相似文献   

7.
T Singh  R Chaubey 《Pramana》2006,67(3):415-428
A self-consistent system of gravitational field with a binary mixture of perfect fluid and dark energy given by a cosmological constant has been considered in Bianchi Type-V universe. The perfect fluid is chosen to be obeying either the equation of state p=γρ with γ ε |0,1| or a van der Waals equation of state. The role of A-term in the evolution of the Bianchi Type-V universe has been studied.  相似文献   

8.
In this work, we have studied the thermodynamic quantities like temperature of the universe, heat capacity and squared speed of sound in generalized gravity theories like Brans-Dicke, Hořava-Lifshitz and f(R) gravities. We have considered the universe filled with dark matter and dark energy. Also we have considered the equation of state parameters for open, closed and flat models. We have observed that in all cases the equation of state behaves like quintessence. The temperature and heat capacity of the universe are found to decrease with the expansion of the universe in all cases. In Brans-Dicke and f(R) gravity theories the squared speed of sound is found to exhibit increasing behavior for open, closed and flat models and in Hořava-Lifshitz gravity theory it is found to exhibit decreasing behavior for open and closed models with the evolution of the universe. However, for flat universe, the squared speed of sound remains constant in Hořava-Lifshitz gravity.  相似文献   

9.
A scenario that removes the contradiction between the suppression of the η(1475) → γγ decay width and the strong coupling of η(1475) to the ρρ, ωω, and γρ0 channels and which leads to a nontrivial prediction for the manifestation of η(1475) in γγ*(Q 2) collisions is considered. Data on the dependence of the cross section for the reaction γγ*(Q 2) → K[`(K)]pK\bar K\pi on the photon virtuality in the energy range 1.35–1.55 GeV are explained here by the production of an η(1475) resonance in contrast to their standard interpretation in terms of the f 1(1420) resonance. Experimental verification of the present explanation requires determining the spin-parity of resonance contributions, R, in the reactions γγ*(Q 2) RRK[`(K)]pK\bar K\pi and J/ψ → γR → γ(γρ0, γϕ).  相似文献   

10.
Dark energy with the usually used equation of state p=γρ, where γ=const<0 is hydrodynamically unstable. To overcome this drawback we consider the cosmology of a perfect fluid with a linear equation of state of a more general form p=α(ρρ 0), where the constants α and ρ 0 are free parameters. The anisotropic Bianchi type-I cosmological model filled with dark energy has been considered. A generalized equation of state for the dark energy component of the universe has been used. The exact solutions to the corresponding Einstein field equations and the statefinder diagnostic pair i.e. {r,s} parameters have been obtained in three interesting cases (i) when ρ Λ>0 and A>0 (ii) when ρ Λ>0 and A<0 and (iii) when ρ Λ<0 and A>0 at the singularities i.e. t→0 and t→±∞.  相似文献   

11.
The existence of co-rotational finite time blow up solutions to the wave map problem from ${\mathbb{R}^{2+1} \to N}The existence of co-rotational finite time blow up solutions to the wave map problem from \mathbbR2+1 ? N{\mathbb{R}^{2+1} \to N} , where N is a surface of revolution with metric d ρ 2 + g(ρ)2 dθ2, g an entire function, is proven. These are of the form u(t,r)=Q(l(t)t)+R(t,r){u(t,r)=Q(\lambda(t)t)+\mathcal{R}(t,r)} , where Q is a time independent solution of the co-rotational wave map equation −u tt  + u rr  + r −1 u r  = r −2 g(u)g′(u), λ(t) = t −1-ν, ν > 1/2 is arbitrary, and R{\mathcal{R}} is a term whose local energy goes to zero as t → 0.  相似文献   

12.
T. Singh  R. Chaubey 《Pramana》2008,71(3):447-458
The Bianchi Type-I Universe filled with dark energy from a wet dark fluid has been considered. A new equation of state for the dark energy component of the Universe has been used. It is modeled on the equation of state p = γ(ρρ*) which can describe a liquid, for example water. The exact solutions to the corresponding field equations are obtained in quadrature form. The solution for constant deceleration parameter have been studied in detail for both power-law and exponential forms. The cases γ = 1 and γ = 0 have also been analysed.   相似文献   

13.
In this paper, the holographic dark-energy model is considered in Brans–Dicke theory, where the holographic dark-energy density ρ Λ =3c 2 M pl2 L −2 is replaced by ρ h=3c 2 Φ(t)L −2. Here is the time-variable Newton constant. With this replacement, it is found that no accelerated expansion for the universe will be achieved when the Hubble horizon is taken to play the role of an IR cut-off. When the event horizon is adopted as the IR cut-off, accelerated expansion for the universe is obtained. In this case, the equation of state of holographic dark energy, w h, takes the modified form . In the limit α→0, the ‘standard’ holographic dark energy is recovered. In the holographic dark-energy dominated epoch, power-law and de Sitter time-space solutions are obtained.  相似文献   

14.
15.
We investigate the effect of the isotropic velocity-dependent potentials on the bound state energy eigenvalues of the Morse potential for any quantum states. When the velocity-dependent term is used as a constant parameter, ρ(r) = ρ 0, the energy eigenvalues can be obtained analytically by using the Pekeris approximation. When the velocity-dependent term is considered as an harmonic oscillator type, ρ(r) = ρ 0 r 2, we show how to obtain the energy eigenvalues of the Morse potential without any approximation for any n and quantum states by using numerical calculations. The calculations have been performed for different energy eigenvalues and different numerical values of ρ 0, in order to show the contribution of the velocity-dependent potential on the energy eigenvalues of the Morse potential.  相似文献   

16.
No Heading We show that the Dirac-von Neumann formalism for quantum mechanics can be obtained as an approximation of classical statistical field theory. This approximation is based on the Taylor expansion (up to terms of the second order) of classical physical variables – maps f : Ω → R, where Ω is the infinite-dimensional Hilbert space. The space of classical statistical states consists of Gaussian measures ρ on Ω having zero mean value and dispersion σ2(ρ) ≈ h. This viewpoint to the conventional quantum formalism gives the possibility to create generalized quantum formalisms based on expansions of classical physical variables in the Taylor series up to terms of nth order and considering statistical states ρ having dispersion σ2(ρ) = hn (for n = 2 we obtain the conventional quantum formalism).  相似文献   

17.
It has recently been suggested that our universe is a three-brane embedded in a higher dimensional spacetime. In this paper I examine static, spherically symmetric solutions that satisfy the effective Einstein field equations on a brane embedded in a five dimensional spacetime. The field equations involve a term depending on the five dimensional Weyl tensor, so that the solutions will not be Schwarzschild in general. This Weyl term is traceless so that any solution of (4) R = 0 is a possible four dimensional spacetime. Different solutions correspond to different five dimensional spacetimes and to different induced energy-momentum tensors on the brane. One interesting possibility is that the Weyl term could be responsible for the observed dark matter in the universe. It is shown that there are solutions of the equation (4) R = 0 that can account for the observed rotation curves of spiral galaxies.  相似文献   

18.
We present the analytical solution to the linear evolution equation of a one component Friedmann perturbation using an equation of state of the form p = (1/3)μσ2(t), where μ is the mass density and σ(t) is the root mean square (rms) velocity in the matter dominated epoch. It is assumed that this rms velocity depends only on the time coordinate and decreases as 1/a, a being the expansion factor of the Friedmann background. The evolution equations are written for scales below the horizon using the longitudinal gauge. The general solution, in the coordinate space, of the evolution equation for the scalar mode is obtained. In the case of spherical symmetry, this solution is expressed in terms of unidimensional integrals of the initial conditions: the initial values of the Newtonian potential and its first time derivative. This perfect fluid solution is a good approximation to the evolution of warm dark matter perturbations obtained by solving the Vlasov’s equation for collisionless particles.  相似文献   

19.
By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for an even polytropic index by choosing $K>Ba^{\frac{3}{n}}$K>Ba^{\frac{3}{n}} , one can obtain ω Λ eff<−1, which corresponds to a universe dominated by phantom dark energy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号