首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Photodynamic therapy (PDT) efficacy is a complex function of tissue sensitivity, photosensitizer (PS) uptake, tissue oxygen concentration, delivered light dose and some other parameters. To better understand the mechanisms and optimization of PDT treatment, we assessed two techniques for quantifying tissue PS concentration and two methods for quantifying pathological tumor damage. The two methods used to determine tissue PS concentration kinetic were in vivo fluorescence probe and ex vivo chemical extraction. Both methods show that the highest tumor to normal tissue PS uptake ratio appears 4 h after PS administration. Two different histopathologic techniques were used to quantify tumor and normal tissue damage. A planimetry assessment of regional tumor necrosis demonstrated a linear relationship with increasing light dose. However, in large murine tumors this finding was complicated by the presence of significant spontaneous necrosis. A second method (densitometry) assessed cell death by nuclear size and density. With some exceptions the densitometry method generally supported the planimetry results. Although the densitometry method is potentially more accurate, it has greater potential subjectivity. Finally, our research suggests that the tools or methods we are studying for quantifying PS levels and tissue damage are necessary for the understanding of PDT effect and therapeutic ratio in experimental in vivo tumor research.  相似文献   

2.
For efficient antibacterial photodynamic therapy for wounds, information on the distribution of a photosensitizer in tissue is important, but conventional fluorescence measurement does not provide depth-resolved information. We previously proposed in vivo photoacoustic (PA) depth profiling of a photosensitizer, but the contrast of PA signals was not sufficiently high, mainly due to light absorption by blood in tissue. In this study, we performed dual-wavelength PA measurement; green light and red light were used to excite blood and photosensitzer, respectively, and the former signal was subtracted from the latter signal to compensate a blood-associated component. Methylene blue or porfimer sodium solution was injected into subcutaneous tissue in rats with deep dermal burn and two-dimensional PA measurement was performed. The signal subtraction diminished not only the signal originating from blood but also the signal originating from the stratum corneum and acoustic reflection noise, creating a high-contrast PA image. The distribution of PA signals was confirmed to coincide well with the distribution of photosensitizer-originating fluorescence measured for tissue biopsied after the PA measurement, demonstrating the validity of this method for in vivo photosensitizer dosimetry. On the basis of this method, temporal behaviors of two photosensitizers were compared.  相似文献   

3.
The in vivo fluorescence emission from human prostates was measured before and after motexafin lutetium (MLu)-mediated photodynamic therapy (PDT). A single side-firing optical fiber was used for both the delivery of 465 nm light-emitting diode excitation light and the collection of emitted fluorescence. It was placed interstitially within the prostate via a closed transparent plastic catheter. Fitting of the collected fluorescence emission spectra using the known fluorescence spectrum of 1 mg/kg MLu in an intralipid phantom yields a quantitative measure of the local MLu concentration. We found that an additional correction factor is needed to account for the reduction of the MLu fluorescence intensity measured in vivo due to strong optical absorption in the prostate. We have adopted an empirical correction formula given by C = (3.1 cm(-1)/micro's) exp (microeff x 0.97 cm), which ranges from approximately 3 to 16, with a mean of 9.3 +/-4.8. Using a computer-controlled step motor to move the probe incrementally along parallel tracks within the prostate we can determine one-dimensional profiles of the MLu concentration. The absolute MLu concentration and the shape of its distribution are confirmed by ex vivo assay and by diffuse absorption measurements, respectively. We find significant heterogeneity in photosensitizer concentration within and among five patients. These variations occur over large enough spatial scales compared with the sampling volume of the fluorescence emission that mapping the distribution in three dimensions is possible.  相似文献   

4.
The pharmacokinetics of the photosensitizer 5,10,15,20-tetra( m -hydroxyphenyl) chlorin(mTHPC) was investigated in the plasma of 20 patients by absorption and fluorescence spectroscopy. The temporal behavior was characterized by a rapid decrease in concentration during the first minutes after intravenous injection of 0.15 mg/kg mTHPC. A minimum concentration in the plasma was reached after about 45 min. The drug concentration then increased again, attaining a maximum after about 10 h, after which it decreased again with a halflife of about 30 h. Irradiation tests in the oral cavity at different time intervals after the injection revealed that the tissue re-action was only partially correlated with the mTHPC plasma level. The tissue response was stronger at later drug-light intervals (1–4 days) than during the first hours after injection even though the mTHPC plasma concentration was higher at the shorter times. Relative mTHPC concentrations were also measured in the mucosae of the oral cavity, the esophagus and the bronchi of 27 patients by light-induced fluorescence spectroscopy using an optical fiber-based spectrometer. These measurements were performed prior to photodynamic therapy (PDT), 4 days after injection of the photosensitizer. Highly significant linear correlations were found between the relative mTHPC concentrations in the mucosae of these three organs. Likewise, the plasma levels of mTHPC measured just before PDT were significantly correlated with the mTHPC concentrations in the three types of mucosae mentioned above. These results indicate that mTHPC plasma levels measured just before PDT can be used for PDT light dosimetry.  相似文献   

5.
Clinical interest in laser-induced fluorescence (LIF) spectroscopy and photodynamic therapy (PDT) is growing rapidly and may ultimately lead to close parallel use of these techniques. However, variations in LIF due to photosensitizer retention as well as tissue damage and healing processes may interfere with autofluorescence-based diagnostic methods. We have investigated the compatibility of these two techniques by quantifying PDT-induced changes in LIF in the human esophagus. Fluorescence spectra were collected endoscopically at excitation wavelengths (lambda ex) of 337, 400 and 410 nm in 32 patients. Measurements were performed immediately before and after PDT treatment with porfimer sodium and during follow-up procedures. In the months following PDT regions of reepithelialized squamous showed reduced autofluorescence in comparison with untreated squamous regions (P = 0.0007). Photosensitizer fluorescence was undetectable with lambda ex = 337 nm during follow-up procedures, whereas for lambda ex = 400 and 410 nm porfimer sodium fluorescence was noted for nearly a year after treatment. Therefore, residual photosensitizer fluorescence is likely to affect certain LIF-based diagnostic techniques during a period when patients are at high risk for tumor recurrence. Modification of LIF systems and/or the use of alternative photosensitizers may be required to optimize the detection of lesions in the post-PDT patient. Given the potential of LIF as a method for surveillance following cancer therapy, further investigation of the compatibility of specific LIF approaches with cancer pharmaceuticals may be warranted.  相似文献   

6.
The parameters that limit supply of photosensitizer to the cancer cells in a solid tumor were systematically analyzed with the use of microvascular transport modeling and histology data from frozen sections. In particular, the vascular permeability transport coefficient and the effective interstitial diffusion coefficient were quantified for Verteporfin-for-Injection delivery of benzoporphyrin derivative (BPD). Orthotopic tumors had higher permeability and diffusion coefficients (Pd = 0.036 microm/s and D = 1.6 microm(2)/s, respectively) as compared to subcutaneously grown tumors (Pd = 0.025 microm/s and D = 0.9 microm2/s, respectively), likely due to the fact that the vessel patterns are more homogeneous orthotopically. In general, large intersubject and intratumor variability exist in the verteporfin concentration, in the range of 25% in plasma concentration and in the range of 20% for tissue concentrations, predominantly due to these microregional variations in transport. However, the average individual uptake of photosensitizer in tumor tissue was only correlated to the total vascular area within the tumor (R2 = 64.1%, P < 0.001). The data are consistent with a view that microregional variation in the vascular permeability and interstitial diffusion rate contribute the spatial heterogeneity observed in verteporfin uptake, but that average supply to the tissue is limited by the total area of perfused blood vessels. This study presents a method to systematically analyze micro-heterogeneity as well as possible methods to increase delivery and homogeneity of photosensitizer within tumor tissue.  相似文献   

7.
5-Aminolevulinic acid and its esterified analogues have been under much investigation to enhance the endogenous production of protoporphyrin IX (PpIX) in tumor cells. However, in this work, we studied the in vitro and in vivo efficacy of exogenously administered PpIX and its esterified analogue, PpIX dimethyl ester (PME), in poorly differentiated human nasopharyngeal carcinoma (NPC/CNE-2) as a photodynamic diagnostic (PDD) agent. NPC/CNE-2 at its earliest time, 1 h after incubation with PME in in vitro studies, has exhibited 64% (P <0.01) higher tumor to normal cell (T/N) fluorescence ratio than with PpIX. In an in vivo mouse xenograft model, comparable photosensitizer concentration in tumor after intravenous administration was observed at 1-3 h time points, but at 9 h, PME had 31% (P=0.05) greater concentration in tumor compared with PpIX. In addition, by constituting PME and PpIX in different topical gel composites, of which, PME gel composition of 8:2 Plasdone and Gantrez resulted in the highest T/N ratio at 6 h after application (34%; P <0.05) in comparison with other gel composites. Evaluation of PME and PpIX constituted in the delivery vehicles investigated showed comparable selectivity for tumor at 1-3 h, thus neither photosensitizer is more efficient than the other for PDD at the early time points; however, beyond 6 h, PME had higher selectivity for tumor compared with PpIX. Thus, further investigation is warranted to improve the drug delivery vehicle for greater tumor selectivity at a shorter incubation time.  相似文献   

8.
A method for the quantification of the concentration of the photosensitizer meso-tetra(hydroxyphenyl) chlorin (mTHPC) in tissue samples is presented. The technique is an extension of a previously published method based on alkaline hydrolysis of tissue, using Solvable as a tissue solubilizer. mTHPC quantification was achieved by subsequent fluorescence spectroscopy. Since the original extraction method involved multiple steps in which water dilution of the sample was implemented, we studied the spectral characteristics of mTHPC in different Solvable/water mixtures. Using UV-VIS absorption and fluorescence spectroscopy, it was demonstrated that the spectral characteristics of mTHPC vary for different Solvable concentrations. In the range of 20-100% Solvable, the fluorescence intensity of mTHPC did not change, while dramatic changes in the mTHPC fluorescence intensity were observed for lower Solvable concentrations (< 20%) due to increasing hydrophilicity of the environment, combined with pH alterations. We also demonstrated that the absorption and fluorescence spectra of the dissolved tissue were time-dependent. Longer incubation of the samples resulted in a significant increase of the native tissue chromophore fluorescence. This implies that for the correct quantification of photosensitizer concentrations, the fluorescence of native tissue chromophores must be accounted for.  相似文献   

9.
Explicit dosimetry of treatment light fluence and implicit dosimetry of photosensitizer photobleaching are commonly used methods to guide dose delivery during clinical PDT. Tissue oxygen, however, is not routinely monitored intraoperatively even though it is one of the three major components of treatment. Quantitative information about in vivo tissue oxygenation during PDT is desirable, because it enables reactive oxygen species explicit dosimetry (ROSED) for prediction of treatment outcome based on PDT-induced changes in tumor oxygen level. Here, we demonstrate ROSED in a clinical setting, Photofrin-mediated pleural photodynamic therapy, by utilizing tumor blood flow information measured by diffuse correlation spectroscopy (DCS). A DCS contact probe was sutured to the pleural cavity wall after surgical resection of pleural mesothelioma tumor to monitor tissue blood flow (blood flow index) during intraoperative PDT treatment. Isotropic detectors were used to measure treatment light fluence and photosensitizer concentration. Blood-flow-derived tumor oxygen concentration, estimated by applying a preclinically determined conversion factor of 1.5 × 109 μMs cm−2 to the blood flow index, was used in the ROSED model to calculate the total reacted reactive oxygen species [ROS]rx. Seven patients and 12 different pleural sites were assessed and large inter- and intrapatient heterogeneities in [ROS]rx were observed although an identical light dose of 60 J cm−2 was prescribed to all patients.  相似文献   

10.
Photodynamic therapy of solid organs requires sufficient PDT dose throughout the target tissue while minimizing the dose to proximal normal structures. This requires treatment planning for position and power of the multiple delivery channels, complemented by on-line monitoring during treatment of light delivery, drug concentration and oxygen levels. We describe our experience in implementing this approach in Phase I/II clinical trials of the Pd-bacteriophephorbide photosensitizer TOOKAD (WST09)-mediated PDT of recurrent prostate cancer following radiation failure. We present several techniques for delivery and monitoring of photodynamic therapy, including beam splitters for light delivery to multiple delivery fibers, multi-channel light dosimetry devices for monitoring the fluence rate in the prostate and surrounding organs, methods of measuring the tissue optical properties in situ, and optical spectroscopy for monitoring drug pharmacokinetics of TOOKAD in whole blood samples and in situ in the prostate. Since TOOKAD is a vascular-targeted agent, the design and implementation of the techniques are different than for cellular-targeted agents. Further development of these delivery and monitoring techniques will permit full on-line monitoring of the treatment that will enable real-time, patient-specific and optimized delivery of PDT.  相似文献   

11.
Selectivity of photodynamic therapy can be improved with localized photosensitizer delivery, but topical administration is restricted by poor diffusion across the stratum corneum. We used electric pulses to increase transdermal transport of delta-aminolevulinic acid (ALA), a precursor to the photosensitizer protoporphyrin IX (PpIX). ALA-filled electrodes were attached to the surface of excised porcine skin or the dorsal surface of mice. Pulses were administered and, in some in vivo cases, a continuous DC potential (6 V) was concomitantly applied. For in vitro 14C ALA penetration, 10 microm layers parallel to the stratum corneum were assayed by liquid scintillation analysis, and 10 microm cross sections were examined autoradiographically. As the electrical dose (voltage x frequency x pulse width x treatment duration) increased, there was an increase in penetration depth. In vivo delivery was assayed by measuring the fluorescence of PpIX in skin samples. A greater than two-fold enhancement of PpIX production with electroporative delivery was seen versus that obtained with passive delivery. Superimposition of a DC potential resulted in a nearly three-fold enhancement of PpIX production versus passive delivery. Levels were higher than the sum of PpIX detected after pulse-alone and DC-alone delivery. Electroporation and electrophoresis are likely factors in electrically enhanced delivery.  相似文献   

12.
Silicon microneedle (MN) arrays were used to puncture excised murine and porcine skin in vitro and transdermal and intradermal delivery of meso-tetra ( N -methyl-4-pyridyl) porphine tetra tosylate (TMP) investigated using topical application of a bioadhesive patch containing 19 mg TMP cm−2. Animal studies, using nude mice, were then conducted to investigate the in vivo performance of the bioadhesive patch following MN puncture of skin. MN puncture significantly enhanced both intradermal and transdermal delivery of TMP in vitro , though the total amounts of drug delivered (25.22% into porcine skin and 0.07% across murine skin) were still quite small in each case. Notwithstanding this, in vivo experiments showed that MN puncture was capable of permitting a prolonged increase in TMP fluorescence at the site of application. Importantly, fluorescence was negligible at distant sites, meaning systemic delivery of the drug was not sufficient to induce TMP accumulation other than at the application site. In this study we have conclusively demonstrated proof of principle; MN puncture allows true intradermal delivery of a preformed photosensitizer in animal skin models in vitro and in vivo . Importantly, transdermal delivery was much reduced in each case. Increasing MN density would allow increased amounts of photosensitizer to be delivered. However, as MNs create aqueous pores in the stratum corneum, a preformed photosensitizer must possess at least some degree of water solubility in order to permit enhanced intradermal delivery in this way. We believe that use of MN array technology in this way has the potential to significantly improve topical photodynamic therapy of skin tumors.  相似文献   

13.
Although several in vivo blood glucose measurement studies have been performed by different research groups using near-infrared (NIR) absorption and Raman spectroscopic techniques, prospective prediction has proven to be a challenging problem. An important issue in this case is the demonstration of causality of glucose concentration to the spectral information, especially as the intrinsic glucose signal is smaller compared with that of the other analytes in the blood–tissue matrix. Furthermore, time-dependent physiological processes make the relation between glucose concentration and spectral data more complex. In this article, chance correlations in Raman spectroscopy-based calibration model for glucose measurements are investigated for both in vitro (physical tissue models) and in vivo (animal model and human subject) cases. Different spurious glucose concentration profiles are assigned to the Raman spectra acquired from physical tissue models, where the glucose concentration is intentionally held constant. Analogous concentration profiles, in addition to the true concentration profile, are also assigned to the datasets acquired from an animal model during a glucose clamping study as well as a human subject during an oral glucose tolerance test. We demonstrate that the spurious concentration profile-based calibration models are unable to provide prospective predictions, in contrast to those based on actual concentration profiles, especially for the physical tissue models. We also show that chance correlations incorporated by the calibration models are significantly less in Raman as compared to NIR absorption spectroscopy, even for the in vivo studies. Finally, our results suggest that the incorporation of chance correlations for in vivo cases can be largely attributed to the uncontrolled physiological sources of variations. Such uncontrolled physiological variations could either be intrinsic to the subject or stem from changes in the measurement conditions.  相似文献   

14.
Meso-tetra(hydroxyphenyl)chlorin (mTHPC) (INN: Temoporfin) is one of the most potent photodynamically active substances in clinical use. Treatment protocols for Temoporfin-mediated photodynamic therapy often rely on drug-light intervals of several days in order for the photosensitizer to accumulate within the target tissue, though tumor selectivity is limited. Here, the mTHPC localization was studied at 2-8 h following systemic administration of a liposomal Temoporfin formulation (0.15 mg kg(-1) b.w.) in HT29 human colon adenocarcinoma in NMRI nu/nu mice. Photosensitizer distribution within tumor and internal organs was investigated by means of high performance liquid chromatography following chemical extraction, as well as in situ fluorescence imaging and point-monitoring fluorescence spectroscopy. For tumor tissue, the Temoporfin concentrations at 4 h (0.16+/-0.024 ng mg(-1)) and 8 h (0.18+/-0.064 ng mg(-1)) were significantly higher than at 2 h (0.08+/-0.026 ng mg(-1)). The average tumor-to-muscle and the tumor-to-skin selectivity were 6.6 and 2, respectively, and did not vary significantly with time after photosensitizer injection. In plasma, the Temoporfin concentration was low (0.07+/-0.07 ng mg(-1)) and showed no significant variation with time. Our results indicate a rapid biodistribution and clearance from the bloodstream. Within the same type of organ, data from both fluorescence methods generally exhibited a significant correlation with the extraction results.  相似文献   

15.
Efficient intratumor delivery of anticancer drugs and photosensitizers is an important factor in the success of chemotherapy and photodynamic therapy, respectively. Unfortunately, their adequate and uniform intratumor distribution is impeded by several physiological barriers and by binding to tissue components. Measurement of gross tumor drug accumulation is a routine method of investigating the uptake and clearance of chemotherapy agents and photosensitizers but tells little about their extravascular spatial distribution. We use whole-mount two-color confocal fluorescence imaging and imaging spectroscopy of unprocessed excised murine tumor fragments to investigate the intratumor distribution of the photosensitizer meso-tetrahydroxyphenyl chlorin (mTHPC) as a function of distance from blood vessels perfused with 0.2 mum diameter fluorescent microspheres. Significant mismatches between drug and perfused vasculature are caused by heterogeneities in tumor blood supply. We describe complex microscopic mTHPC gradients that reverse dramatically relative to the perfused vasculature with time after injection. This imaging technique can be applied to screen the dynamic intratumor distribution of other fluorescent photosensitizers and anticancer drugs.  相似文献   

16.
The characteristics of protoporphyrin IX (PPIX) fluorescence in superficial basal cell carcinoma (sBCC) and carcinoma in situ (Bowen's Disease, BD) following application of 5-aminolaevulinic acid (5-ALA) and its methyl ester (methyl aminolevulinate [MAL]) before, during and after photodynamic therapy (PDT) were investigated in 40 patients. Photosensitizer prodrug penetration can limit PDT efficacy and understanding the characteristics of PPIX fluorescence through fluorescence spectroscopy, may improve knowledge of photosensitizer delivery. Fluorescence intensity was assessed quantitatively, and the rate of photobleaching was determined by fitting an exponential decay. As a secondary end-point, PDT-induced pain was also measured continuously during treatment using a novel hand-held device, known as a pain logger. In vivo PPIX fluorescence was shown to decrease during irradiation, allowing the in vivo photobleaching of PPIX to be monitored. No significant difference was found between ALA- or MAL-induced PPIX fluorescence in lesions of sBCC and BD (P>0.05), indicating no detectable difference in PPIX kinetics for the two prodrugs as assessed by these measures. Pain, as assessed by the logger device, showed high interindividual variability and pain levels tended to be higher initially, decreasing during treatment. No difference was seen in pain experienced during ALA-or MAL-PDT (P>0.05).  相似文献   

17.
Targeted drug delivery is an emerging technological strategy that enables nanoparticle systems to be responsive for tumor therapy. Magnetic mesoporous silica nanoparticles (MMSNs) were cloaked with red blood cell membrane (RBC). This integrates long circulation, photosensitizer delivery, and magnetic targeting for cancer therapy. In vivo experiments demonstrate that RBC@MMSNs can avoid immune clearance and achieve magnetic field (MF)‐induced high accumulation in a tumor. When light irradiation is applied, singlet oxygen rapidly generates from hypocrellin B (HB)‐loaded RBC@MMSN and leads to the necrosis of tumor tissue. Such a RBC‐cloaked magnetic nanocarrier effectively integrates immunological adjuvant, photosensitizer delivery, MF‐assisted targeting photodynamic therapy, which provides an innovative strategy for cancer therapy.  相似文献   

18.
We report measurements performed on the normal skin of rats in vivo, which provide information on the photobleaching kinetics and mechanisms of the photosensitizer meso-tetrahydroxyphenyl chlorin (mTHPC). Loss of mTHPC fluorescence was monitored using in vivo fluorescence spectroscopy during photodynamic therapy (PDT) performed using 650 nm laser irradiation. The bleaching was evaluated for irradiances of 5, 20 and 50 mW cm(-2). Two distinct phases of mTHPC photobleaching were observed. In the first phase there was no obvious irradiance dependence in the loss of fluorescence vs fluence. The second phase was initiated by an irradiance-dependent discontinuity in the slope of the bleaching curve, after which the photobleaching rates showed an irradiance dependence consistent with an oxygen-dependent reaction process. To investigate the unusual shape of the in vivo bleaching curves, we measured the PDT-induced changes in O2 concentrations in mTHPC-sensitized spheroids irradiated with 2, 5 and 20 mW cm(-2) of 650 nm light. The oxygen concentration data indicated no unusual features within the range of fluences where the discontinuities in fluorescence were observed during in vivo spectroscopy. The fluorescence from the in vivo bleaching experiments thus reports a phenomenon that is not reported by measurements of the photochemical oxygen consumption in the spheroids.  相似文献   

19.
Electrophysiological responses of rat myocardial cells to exogenous photosensitization reactions for a short period of incubation with two photosensitizers, talaporfin sodium or porfimer sodium, were measured in a subsecond time scale. The loading period of the photosensitizer when the photosensitizer might not be taken up by the cells was selected as 15min, which was determined by the fluorescence microscopic observation. We measured the intracellular Ca(2+) concentration ([Ca(2+) ](in) ) by using a fluorescent Ca(2+) indicator, Fluo-4 AM, under a high-speed confocal laser microscope to evaluate the acute electrophysiological cell response to the photosensitization reaction. The measured temporal change in Fluo-4 fluorescence intensity indicated that the response to the photosensitization reaction might be divided into two phases in both photosensitizers. The first phase is acute response: disappearance of Ca(2+) oscillation when irradiation starts, which might be caused by ion channel dysfunction. The second phase is slow response: [Ca(2+) ](in) elevation indicating influx of Ca(2+) due to the concentration gradient. The continuous Ca(2+) influx followed by changes in cell morphology suggested micropore formation on the surface of the cell membrane, resulting in necrotic cell death.  相似文献   

20.
A spherical symmetric design-response surface methodology was applied to optimize the preparation of vinpocetine-loaded poly(D,L-lactide-co-glycolide) PLGA in situ forming microparticles (ISM system). The influence of the ratio of PLGA to vinpocetine (w/w), the concentration of Tween 80 (w/v) and the volume of propylene glycol on the burst release, medium particle diameter and size distribution was evaluated. Scan electron microscopy of the optimized in situ microparticles exhibited spherical shape, and vinpocetine-loading mainly inside the microparticles. The data showed that the release of vinpocetine from in situ microparticles in vitro and in vivo lasted about 40 d. In vivo pharmacokinetic characteristics of the optimized in situ microparticles was assessed after they were intramuscularly injected into rats. HPLC method was used to determine the plasma concentration of vinpocetine. The absolute bioavailability of vinpocetine in the microparticles was 27.6% in rats, which suggested that PLGA in situ microparticles were a valuable system for the delivery of vinpocetine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号