首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have investigated the adsorption of nine different adatoms on the (111) and (100) surfaces of Iridium (Ir) using first principles density functional theory. The study explores surface functionalization of Ir which would provide important information for further study of its functionality in catalysis and other surface applications. The adsorption energy, stable geometry, density of states and magnetic moment are some of the physical quantities of our interest. The study reveals that the three-/four- fold hollow site is energetically the most favorable adsorption site on the (111)/(100) surface of Ir. The investigation on a wide range of coverages (from 0.04 to 1 monolayer) reveals the strong coverage dependence of adsorption energy of the adsorbate atoms. The adsorption energy is found to increase as the coverage increases, implying a repulsive interaction between the adsorbates. Strong hybridization between the adsorbates and the substrate electronic states is revealed to impact the adsorption, while the magnetic moment of the adsorbates is found to be suppressed. The Bader analysis reveals significant amount of charge transfers between the adsorbate atoms and the substrate. The binding of adsorbate atoms on the (100) surface is observed to be moderately stronger as compared to that on the (111) surface.  相似文献   

2.
The influence of molecular vibrations on the reaction dynamics of H2 on Si(001) as well as isotopic effects have been investigated by means of optical second-harmonic generation and molecular beam techniques. Enhanced dissociation of vibrationally excited H2 on Si(001)2 x 1 has been found corresponding to a reduction of the mean adsorption barrier to 390 meV and 180 meV for nu=1 and nu=2, respectively. The adsorption dynamics of the isotopes H2 and D2 show only small differences in the accessible range of beam energies between 50 meV and 350 meV. They are traced back to different degrees of vibrational excitation and do not point to an important influence of quantum tunneling in crossing the adsorption barrier. The sticking probability of H2 on the 7 x 7-reconstructed Si(111) surface was found to be activated both by H2 kinetic energy and surface temperature in a qualitatively similar fashion as H2/Si(001)2 x 1. Quantitatively, the overall sticking probabilities of H2 on the Si(111) surface are about one order of magnitude lower than on Si(001), the influence of surface temperature is generally stronger.  相似文献   

3.
CH(x) (x=1-3) adsorptions on clean and CO precovered Rh(111) surfaces were studied by density functional theory calculations. It is found that CH(x) (x=1-3) radicals prefer threefold hollow sites on Rh(111) surfaces, and the bond strength between CH(x) and Rh(111) follows the order of CH(3)相似文献   

4.
Indirect adsorbate-adsorbate interactions between adsorbed ammonia (NH3) molecules on the Si(100) surface are investigated using density functional theory. Two different nonlocal effects mediated through the surface electronic structure are observed: "poisoning" and hydrogen bonding. We find that adsorbed NH3 "poisons" adsorption of NH3 on neighboring Si dimers on the same side of the dimer row whereas neighboring NH2(a) groups favor this configuration. Adsorption of NH3 involves charge transfer to the surface that localizes on neighboring Si dimer atoms, preventing adsorption of NH3 at these sites. These indirect interactions are similar to Friedel-type interactions observed on metal surfaces with an estimated range of less than 7.8 A on the Si(100) surface. These interactions may be manipulated to construct local ordering of the adsorbates on the surface.  相似文献   

5.
We investigate the structure of nonionic fluorosurfactant zonyl FSN self-assembled monolayers on Au(111) and Au(100) in 0.05 M H(2)SO(4) as a function of the electrode potential by electrochemical scanning tunneling microscopy (ECSTM). On Au(111), a (3(1/2) × 3(1/2))R30° arrangement of the FSN SAMs is observed, which remains unchanged in the potential range where the redox reaction of FSN molecules does not occur. On Au(100), some parallel corrugations of the FSN SAMs are observed, which originate from the smaller distance and the repulsive interaction between FSN molecules to make the FSN molecules deviate from the bridging sites, and ECSTM reveals a potential-induced structural transition of the FSN SAMs. The experimental observations are rationalized by the effect of the intermolecular interaction. The smaller distance between molecules on Au(100) results in the repulsive force, which increases the probability of structural change induced by external factors (i.e., the electrode potential). The appropriate distance and interactions of FSN molecules account for the stable structure of FSN SAMs on Au(111). Surface crystallography may influence the intermolecular interaction through changing the molecular arrangements of the SAMs. The results benefit the molecular-scale understanding of the behavior of the FSN SAMs under electrochemical potential control.  相似文献   

6.
Continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was used to study the soft x-ray-induced reactions of CF(3)Br molecules adsorbed on Si(111)-7×7 near the Si(2p) edge (98-110 eV). The monochromatic synchrotron radiation was employed as a soft x-ray light source in the photon-induced reactions and also as a probe for investigating the produced fluorination states of the bonding surface Si atom in the positive-ion PSD spectroscopy. Several different surface coverages were investigated. The PSD spectra from the low-CF(3)Br-covered surfaces show the production of surface SiF species, while those from the high-CF(3)Br-covered surfaces depict the formation of surface SiF, SiF(2), and SiF(3) species. The photolysis cross section of the submonolayer CF(3)Br-covered surface is determined as ~4.3×10(-18) cm(2). A comparison with the results on CF(3)Cl/Si(111)-7×7 surface is discussed.  相似文献   

7.
We demonstrate the conversion of an adsorbed precursor state of polychlorinated biphenyl (PCB) molecules on the Si(111)-7 × 7 surface at room temperature into a more stable configuration via site- and energy-selective atomic manipulation in the scanning tunneling microscope (STM). Whereas molecular desorption is maximized by electron injection into the chemisorbed molecular ring at low voltage, injection into the physisorbed molecular ring above a threshold voltage (2.5 V) favors the reconfiguration of the bonding. The results clearly demonstrate both intramolecular charge localization and intramolecular charge transportation as key ingredients in the atomic manipulation of individual polyatomic molecules.  相似文献   

8.
We report a systematic investigation of the electronic structure of chemisorbed alkali atoms (Li-Cs) on a Ag(111) surface by two-photon photoemission spectroscopy. Angle-resolved two-photon photoemission spectra are obtained for 0-0.1 monolayer coverage of alkali atoms. The interfacial electronic structure as a function of periodic properties and the coverage of alkali atoms is observed and interpreted assuming ionic adsorbate/substrate interaction. The energy of the alkali atom σ-resonance at the limit of zero coverage is primarily determined by the image charge interaction, whereas at finite alkali atom coverages, it follows the formation of a dipolar surface field. The coverage- and angle-dependent two-photon photoemission spectra provide information on the photoinduced charge-transfer excitation of adsorbates on metal surfaces. This work complements the previous work on alkali/Cu(111) chemisorption [Phys. Rev. B 2008, 78, 085419].  相似文献   

9.
Ultraviolet photoassisted adsorption of terminally double-bonded molecules, allylamine (CH2=CH-CH2-NH2) and 1-butene (CH2=CH-CH2-CH3), on hydrogen-terminated silicon (111) surface was attempted to obtain adsorbates covalently terminating the surface Si atoms. The adsorption process was monitored by high-resolution electron energy loss spectroscopy, multiple internal infrared reflection-absorption spectroscopy, and Auger electron spectroscopy. Allylamine adsorbates emerged upon delivery of allylamine gas under ultraviolet irradiation. The N-H bonds in allylamine were evidenced to survive over the photoadsorption process by vibrational analysis and by the reaction with ketene. CH3- groups were detected at low coverage, indicating anchoring of the organic moieties by the secondary (sec-) type carbon atoms, which were taken over by the primary (n-) type with increasing coverage. C-D bonds were detected after deposition on deuterium-terminated Si(111) upon incorporation of Si-terminating H into the hydrocarbon part of adsorbates. In the case of 1-butene, not only the C=C end but also the CH3- end of a molecule might attach on Si, resulting in emergence of adsorbates composed of CH2 groups. The newly obtained adsorbates are prospective as a material applied for nanolithography, fine electrochemistry, and nano-biotechnology.  相似文献   

10.
The properties of Si(111) surfaces grafted with benzene derivatives were investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). The investigated materials were nitro-, bromo-, and methoxybenzene layers (-C(6)H(4)-X, with X = NO(2), Br, O-CH(3)) deposited from diazonium salt solutions in a potentiostatic electrochemical process. The UPS spectra of the valence band region are governed by the molecular orbital density of states of the adsorbates, which is modified from the isolated state in the gas phase due to molecule-molecule and molecule-substrate interaction. Depending on the adsorbate, clearly different emission features are observed. The analysis of XPS intensities clearly proves multilayer formation for bromo- and nitrobenzene in agreement with the amount of charge transferred during the grafting process. Methoxybenzene forms only a sub-monolayer coverage. The detailed analysis of binding energy shifts of the XPS emissions for determining the band bending and the secondary electron onset in UPS spectra for determining the work function allow one to discriminate between surface dipole layers--changing the electron affinity--and band bending, affecting only the work function. Thus, complete energy band diagrams of the grafted Si(111) surfaces can be constructed. It was found that silicon surface engineering can be accomplished by the electrochemical grafting process using nitrobenzene and bromobenzene: silicon-derived interface gap states are chemically passivated, and the adsorbate-related surface dipole effects an increase of the electron affinity.  相似文献   

11.
运用电化学循环伏安和程序电位阶跃方法研究了乙二醇在Pt(111)单晶电极上的解离吸附过程.动力学研究的定量结果指出,乙二醇解离吸附反应的平均速率随电极电位变化呈火山型分布,其最大值在0.10 V(vs SCE)附近.测得在含2×10-3 mol•L-1乙二醇的溶液中,最大初始解离速率vi为4.35×10-12 mol•cm--2•s-1.  相似文献   

12.
The electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) has been studied using voltammetry, chronoamperometry, and in situ infrared spectroscopy. The oxidative adsorption of ammonia results in the formation of NH(x) (x = 0-2) adsorbates. On Pt(111), ammonia oxidation occurs in the double-layer region and results in the formation of NH and, possibly, N adsorbates. The experimental current transients show a hyperbolic decay (t(-1)), which indicates strong lateral (repulsive) interactions between the (reacting) species. On Pt(100), the NH(2) adsorbed species is the stable intermediate of ammonia oxidation. Stabilization of the NH and NH(2) fragments on Pt(111) and Pt(100), respectively, is in an interesting agreement with recent theoretical predictions. The Pt(111) surface shows extremely low activity in ammonia oxidation to dinitrogen, thus indicating that neither NH nor N (strongly) adsorbed species are active in dinitrogen production. Neither nitrous oxide nor nitric oxide is the product of ammonia oxidation on Pt(111) at potentials up to 0.9 V, as deduced from the in situ infrared spectroscopy measurements. The Pt(100) surface is highly active in dinitrogen production. This process is characterized by a Tafel slope of 30 mV decade(-1), which is explained by a rate-determining dimerization of NH(2) fragments followed by a fast decay of the resulting surface-bound hydrazine to dinitrogen. Therefore, the high activity of the Pt(100) surface for ammonia oxidation to dinitrogen is likely to be related to its ability to stabilize the NH(2) adsorbate.  相似文献   

13.
We have performed ab initio calculations for the adsorption of L-cysteine on Ag(111) using density functional theory. We have focused on two possible adsorbed species: the L-cysteine radical (?S-CH(2)-CH-NH(2)-COOH) adsorbed almost flat at a bridge site, slightly displaced toward an fcc location, and the zwitterionic radical Z-cysteine (?S-CH(2)-CH-NH(3)(+)-COO(-)) adsorbed at a bridge site, shifted to a hcp site forming a (4 × 4) unit cell (θ = 0.06) and a (√3 × √3) R 30° unit cell (θ = 0.33), respectively. Special attention has been paid to the electronic structure of the system. The adsorbate-silver bond formation has been exhaustively investigated by analyzing the density of states projected onto the different atoms of the molecule, and by charge density difference calculations. A complicated interplay between sp and d states of silver in the formation of bonds between the adsorbates and the surface has been found. The role of the carboxyl group in the interaction with the surface has been also analyzed.  相似文献   

14.
We demonstrate that nearest neighbor molecular adsorption can be sterically hindered on the Si(111)-7×7 surface reconstruction. This breaks the energetic equivalence of corner and edge di-σ attachment geometries and allows a translationally ordered organic layer to be templated directly on the 7×7 reconstruction.  相似文献   

15.
This paper presents a detailed study of a water adlayer adsorbed on Pt(111) and Rh(111) surfaces using periodic density functional theory methods. The interaction between the metal surface and the water molecules is assessed from molecular dynamics simulation data and single point electronic structure calculations of selected configurations. It is argued that the electron bands around the Fermi level of the metal substrate extend over the water adlayer. As a consequence in the presence of the water layer the surface as a whole still maintains its metallic conductivity-a result of a crucial importance for understanding the process of electron transfer through the water/metal interface and electrochemical reactions in particular. Our results also indicate that there exists a weak bond between the hydrogen of the water and the Rh metal atoms as opposed to the widespread (classical) models based on purely repulsive interaction. This suggests that the commonly used classical interactions potentials adopted for large scale molecular dynamics simulations of water/metal interfaces may need revision. Two adsorption models of water on transition metals with the OH bonds pointing towards or away of the surface are also examined. It is shown that due to the very close values of their adsorption energies one should consider the real structure of water on the surface as a mixture of these simple "up" and "down" models. A model for the structure of the adsorbed water layer on Rh(111) is proposed in terms of statistical averages from molecular dynamics simulations.  相似文献   

16.
The electronic properties of Pt nanoparticles deposited on CeO(2)(111) and CeO(x)/TiO(2)(110) model catalysts have been examined using valence photoemission experiments and density functional theory (DFT) calculations. The valence photoemission and DFT results point to a new type of "strong metal-support interaction" that produces large electronic perturbations for small Pt particles in contact with ceria and significantly enhances the ability of the admetal to dissociate the O-H bonds in water. When going from Pt(111) to Pt(8)/CeO(2)(111), the dissociation of water becomes a very exothermic process. The ceria-supported Pt(8) appears as a fluxional system that can change geometry and charge distribution to accommodate adsorbates better. In comparison with other water-gas shift (WGS) catalysts [Cu(111), Pt(111), Cu/CeO(2)(111), and Au/CeO(2)(111)], the Pt/CeO(2)(111) surface has the unique property that the admetal is able to dissociate water in an efficient way. Furthermore, for the codeposition of Pt and CeO(x) nanoparticles on TiO(2)(110), we have found a transfer of O from the ceria to Pt that opens new paths for the WGS process and makes the mixed-metal oxide an extremely active catalyst for the production of hydrogen.  相似文献   

17.
Photoelectron spectroscopy with synchrotron radiation and low energy electron diffraction (LEED) were used in order to study the MgCl(2)Si(111) system. At submonolayer coverage of MgCl(2), a new LEED pattern was observed corresponding to a (sqr rt 3 x sqr rt 3)R30 degrees overlayer superimposed on the underlying reconstructed Si(111)7 x 7. The surface species at this stage are mainly molecular MgCl(2) and MgCl(x) (x<2) or MgO(x)Cl(y) attached to the Si substrate through Cl bridges coexisting with monodentate SiCl. The interfacial interaction becomes more pronounced when the submonolayer coverage is obtained by annealing thicker MgCl(2) layers, whereby desorption of molecular MgCl(2) is observed leaving on the nonreconstructed silicon surface an approximately 0.2 ML thick MgCl(x) layer which again forms the (sqr rt 3 x sqr rt 3 )R30 degrees superstructure.  相似文献   

18.
In order to determine the structures of Si(111)-√7×√3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calculations. Their scanning tunneling microscopic images and work functions are simulated and compared with experimental results. In this way, the hex-H3' and rect-T1 models are identified as the experimental configurations for the hexagonal and rectangular types, respectively. The structural evolution mechanism of the In/Si(111) surface with indium coverage around 1.0 monolayer is discussed. The 4×1 and √7×√3 phases are suggested to have two different types of evolution mechanisms, consistent with experimental results.  相似文献   

19.
We report a detailed investigation of the behavior of chemisorbed hydrogen atoms (Ha) on Pt(111) by a combination of an ex-perimental study of the Ha + Da reaction and first-principles calculations. The coverage-dependent adsorption and desorption behavior of Ha and Da on Pt(111) have been systematically established and can be well interpreted in terms of repulsive inter-actions between adsorbates. Ha adsorbs exclusively on the face-centered cubic (fcc) sites of Pt(111) at coverages not exceeding 1 monolaye...  相似文献   

20.
Ni/Pt(111) bimetallic surfaces: unique chemistry at monolayer ni coverage.   总被引:1,自引:0,他引:1  
We have utilized the dehydrogenation and hydrogenation of cyclohexene as probe reactions to compare the chemical reactivity of Ni overlayers that are grown epitaxially on a Pt(111) surface. The reaction pathways of cyclohexene were investigated using temperature-programmed desorption, high-resolution electron energy loss (HREELS), and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Our results provide conclusive spectroscopic evidence that the adsorption and subsequent reactions of cyclohexene are unique on the monolayer Ni surface as compared to those on the clean Pt(111) surface or the thick Ni(111) film. HREELS and NEXAFS studies show that cyclohexene is weakly pi-bonded on monolayer Ni/Pt(111) but di-sigma-bonded to Pt(111) and Ni(111). In addition, a new hydrogenation pathway is detected on the monolayer Ni surface at temperatures as low as 245 K. By exposing the monolayer Ni/Pt(111) surface to D2 prior to the adsorption of cyclohexene, the total yield of the normal and deuterated cyclohexanes increases by approximately 5-fold. Furthermore, the reaction pathway for the complete decomposition of cyclohexene to atomic carbon and hydrogen, which has a selectivity of 69% on the thick Ni(111) film, is nearly negligible (<2%) on the monolayer Ni surface. Overall, the unique chemistry of the monolayer Ni/Pt(111) surface can be explained by the weaker interaction between adsorbates and the monolayer Ni film. These results also point out the possibility of manipulating the chemical properties of metals by controlling the overlayer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号