首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent research on microfluidic paper-based analytical devices (μPADs) has shown that paper has great potential for the fabrication of low-cost diagnostic devices for healthcare and environmental monitoring applications. Herein, electrochemiluminescence (ECL) was introduced for the first time into μPADs that were based on screen-printed paper-electrodes. To further perform high-specificity, high-performance, and high-sensitivity ECL on μPADs for point-of-care testing (POCT), ECL immunoassay capabilities were introduced into a wax-patterned 3D paper-based ECL device, which was characterized by SEM, contact-angle measurement, and electrochemical impedance spectroscopy. With the aid of a home-made device-holder, the ECL reaction was triggered at room temperature. By using a typical tris(bipyridine)ruthenium-tri-n-propylamine ECL system, this paper-based ECL 3D immunodevice was applied to the diagnosis of carcinoembryonic antigens in real clinical serum samples. This contribution further expands the number of sensitive and specific detection modes of μPADs.  相似文献   

2.
In recent years, there has been high interest in paper-based microfluidic sensors or microfluidic paper-based analytical devices (μPADs) towards low-cost, portable, and easy-to-use sensing for chemical and biological targets. μPAD allows spontaneous liquid flow without any external or internal pumping, as well as an innate filtration capability. Although both optical (colorimetric and fluorescent) and electrochemical detection have been demonstrated on μPADs, several limitations still remain, such as the need for additional equipment, vulnerability to ambient lighting perturbation, and inferior sensitivity. Herein, alternative detection methods on μPADs are reviewed to resolve these issues, including relatively well studied distance-based measurements and the newer capillary flow dynamics-based method. Detection principles, assay performance, strengths, and weaknesses are explained for these methods, along with their potential future applications towards point-of-care medical diagnostics and other field-based applications.  相似文献   

3.
Many diagnostic tests in a conventional clinical laboratory are performed on blood plasma because changes in its composition often reflect the current status of pathological processes throughout the body. Recently, a significant research effort has been invested into the development of microfluidic paper-based analytical devices (μPADs) implementing these conventional laboratory tests for point-of-care diagnostics in resource-limited settings. This paper describes the use of red blood cell (RBC) agglutination for separating plasma from finger-prick volumes of whole blood directly in paper, and demonstrates the utility of this approach by integrating plasma separation and a colorimetric assay in a single μPAD. The μPAD was fabricated by printing its pattern onto chromatography paper with a solid ink (wax) printer and melting the ink to create hydrophobic barriers spanning through the entire thickness of the paper substrate. The μPAD was functionalized by spotting agglutinating antibodies onto the plasma separation zone in the center and the reagents of the colorimetric assay onto the test readout zones on the periphery of the device. To operate the μPAD, a drop of whole blood was placed directly onto the plasma separation zone of the device. RBCs in the whole blood sample agglutinated and remained in the central zone, while separated plasma wicked through the paper substrate into the test readout zones where analyte in plasma reacted with the reagents of the colorimetric assay to produce a visible color change. The color change was digitized with a portable scanner and converted to concentration values using a calibration curve. The purity and yield of separated plasma was sufficient for successful operation of the μPAD. This approach to plasma separation based on RBC agglutination will be particularly useful for designing fully integrated μPADs operating directly on small samples of whole blood.  相似文献   

4.
Microfluidic paper-based analytical devices (μPADs) allow user-friendly and portable chemical determinations, although they provide limited applicability due to insufficient sensitivity. Several approaches have been proposed to address poor sensitivity in μPADs, but they frequently require bulky equipment for power and/or read-outs. Universal serial buses (USB) are an attractive alternative to less portable power sources and are currently available in many common electronic devices. Here, USB-powered μPADs (USB μPADs) are proposed as a fusion of both technologies to improve performance without adding instrumental complexity. Two ITP USB μPADs were developed, both powered by a 5 V potential provided through standard USB ports. The first device was fabricated using the origami approach. Its operation was analyzed experimentally and numerically, yielding a two-order-of-magnitude sample focusing in 15 min. The second ITP USB μPAD is a novel design, which was numerically prototyped with the aim of handling larger sample volumes. The reservoirs were moved away from the ITP channel and capillary action was used to drive the sample and electrolytes to the separation zone, predicting 25-fold sample focusing in 10 min. USB μPADs are expected to be adopted by minimally-trained personnel in sensitive areas like resource-limited settings, the point-of-care and in emergencies.  相似文献   

5.
Recent research on microfluidic paper‐based analytical devices (μPADs) has shown that paper has great potential for the fabrication of low‐cost diagnostic devices for healthcare and environmental monitoring applications. Herein, electrochemiluminescence (ECL) was introduced for the first time into μPADs that were based on screen‐printed paper‐electrodes. To further perform high‐specificity, high‐performance, and high‐sensitivity ECL on μPADs for point‐of‐care testing (POCT), ECL immunoassay capabilities were introduced into a wax‐patterned 3D paper‐based ECL device, which was characterized by SEM, contact‐angle measurement, and electrochemical impedance spectroscopy. With the aid of a home‐made device‐holder, the ECL reaction was triggered at room temperature. By using a typical tris(bipyridine)ruthenium–tri‐n‐propylamine ECL system, this paper‐based ECL 3D immunodevice was applied to the diagnosis of carcinoembryonic antigens in real clinical serum samples. This contribution further expands the number of sensitive and specific detection modes of μPADs.  相似文献   

6.
We report here the use of multiple indicators for a single analyte for paper-based microfluidic devices (μPAD) in an effort to improve the ability to visually discriminate between analyte concentrations. In existing μPADs, a single dye system is used for the measurement of a single analyte. In our approach, devices are designed to simultaneously quantify analytes using multiple indicators for each analyte improving the accuracy of the assay. The use of multiple indicators for a single analyte allows for different indicator colors to be generated at different analyte concentration ranges as well as increasing the ability to better visually discriminate colors. The principle of our devices is based on the oxidation of indicators by hydrogen peroxide produced by oxidase enzymes specific for each analyte. Each indicator reacts at different peroxide concentrations and therefore analyte concentrations, giving an extended range of operation. To demonstrate the utility of our approach, the mixture of 4-aminoantipyrine and 3,5-dichloro-2-hydroxy-benzenesulfonic acid, o-dianisidine dihydrochloride, potassium iodide, acid black, and acid yellow were chosen as the indicators for simultaneous semi-quantitative measurement of glucose, lactate, and uric acid on a μPAD. Our approach was successfully applied to quantify glucose (0.5-20 mM), lactate (1-25 mM), and uric acid (0.1-7 mM) in clinically relevant ranges. The determination of glucose, lactate, and uric acid in control serum and urine samples was also performed to demonstrate the applicability of this device for biological sample analysis. Finally results for the multi-indicator and single indicator system were compared using untrained readers to demonstrate the improvements in accuracy achieved with the new system.  相似文献   

7.
This article describes the use of microfluidic paper-based analytical devices (μPADs) to perform quantitative chemical assays with internal standards. MicroPADs are well-suited for colorimetric biochemical assays; however, errors can be introduced from the background color of the paper due to batch difference and age, and from color measurement devices. To reduce errors from these sources, a series of standard analyte solutions and the sample solution are assayed on a single device with multiple detection zones simultaneously; an analyte concentration calibration curve can thus be established from the standards. Since the μPAD design allows the colorimetric measurements of the standards and the sample to be conducted simultaneously and under the same condition, errors from the above sources can be minimized. The analytical approach reported in this work shows that μPADs can perform quantitative chemical analysis at very low cost.   相似文献   

8.
This paper presents a simple and low-cost method for patterning poly(dimethylsiloxane) (PDMS) barriers in porous support such as paper for the construction of flexible microfluidic paper-based analytical devices (μPADs). The fabrication method consisted of contact-printing a solution of PDMS and hexane (10:1.5 w/w) onto chromatographic paper using custom-designed rubber stamps containing the patterns of μPADs. After penetrating the paper (∼30 s), the PDMS is cured to form hydrophobic barriers. Under optimized conditions, hydrophobic barriers and hydrophilic channels with dimensions down to 949 ± 88 μm and 771 ± 90 μm (n = 5), respectively, were obtained. This resolution is well-suitable for most applications in analytical chemistry. Chemical compatibility studies revealed that the PDMS barriers were able to contain some organic solvents, including acetonitrile and methanol, and aqueous solutions of some surfactants. This find is particularly interesting given that acetonitrile and methanol are the most used solvents in chromatographic separations, non-aqueous capillary electrophoresis and electroanalysis, as well as aqueous solutions of surfactants are suitable mediums for cell lyses assays. The utility of the technique was evaluated in the fabrication of paper-based electrochemical devices (PEDs) with pencil-drawn electrodes for experiments in static cyclic voltammetry and flow injection analysis (FIA) with amperometric detection, in both aqueous and organic mediums.  相似文献   

9.
Paper-based microfluidic devices are an alternative technology for fabricating simple, low-cost, portable and disposable platforms for clinical diagnosis. Hereby, a novel wax dipping method for fabricating paper-based microfluidic devices (μPADs) is reported. The iron mould for wax dipping was created by a laser cutting technique. The designed pattern was transferred onto paper by dipping an assembly mould into melted wax. The optimal melting temperature and dipping time were investigated. The optimal melting temperature was in the range of 120-130 °C, and the optimal dipping time was 1 s. The whole fabrication process could be finished within 1 min without the use of complicated instruments or organic solvents. The smallest hydrophilic channel that could be created by the wax dipping method was 639 ± 7 μm in size. The reproducibility of the μPAD fabrication for hydrophilic channel width of the test zone and sample zone was 1.48% and 6.30%, respectively. To verify the performance of the μPAD, multiple colorimetric assays for simultaneous detection of glucose and protein in real samples were performed. An enzymatic assay and the bromocresol green (BCG) method were conducted on the paper device to determine the presence of glucose and protein in a test solution. The results of the assays were not significantly different from those of the conventional methods (p > 0.05, pair t-test and one-way ANOVA method). The wax dipping provides a new alternative method for fabricating lab-on-paper devices for multiple clinical diagnostics and will be very beneficial for developing countries.  相似文献   

10.
With the increasing interest in the health benefits arising from the consumption of dietary products rich in antioxidants, there exists a clear demand for easy-to-use and cost-effective tests that can be used for the identification of the antioxidant power of food products. Paper-based analytical devices constitute a remarkable platform for such expedient and low-cost assays with minimal external resources but efforts in this direction are still scarce. In this work we introduce a new paper-based device in the form of a sensor patch that enables the determination of antioxidant activity through analyte-driven on-paper formation of gold nanoparticles. The principle of detection capitalizes, for the first time, on the on-paper nucleation of gold ions to its respective nanoparticles, upon reduction by antioxidant compounds present in an aqueous sample. The ensuing chromatic transitions, induced on the paper surface, are used as an optical “signature” of the antioxidant strength of the solution. The response of the paper-based sensor was evaluated against a large variety of antioxidant species and the respective dose response curves were constructed. On the basis of these data, the contribution of each species according to its chemical structure was elucidated. For the analysis of real samples, a concentration-dependent colorimetric response was established against Gallic acid equivalents over a linear range of 10 μM–1.0 mM, with detection limits at the low and ultra-low μM levels (i.e. <1.0 μM) and satisfactory precision (RSD = 3.6–12.6%). The sensor has been tested for the assessment of antioxidant activity in real samples (teas and wines) and the results correlated well with commonly used antioxidant detection methods. Importantly, the sensor performed favorably for long periods of time when stored at moisture-free and low temperature conditions without losing its activity thus posing as an attractive alternative to the assessment of antioxidant activity without specialized equipment. The use of the sensor by non-experts for a rapid assessment of natural products in field testing is envisioned. Importantly, we demonstrate for the first time that analyte-mediated growth of nanomaterials directly on the paper surface could open new opportunities in paper-based analytical devices.  相似文献   

11.
Paper-based microfluidic devices (μPADs) are capable of achieving rapid quantitative measurements of a variety of analytes inexpensively. μPADs rely on patterning hydrophilic-hydrophobic regions on a sheet of paper in order to create capillary channels within impermeable fluidic brakes on the paper. Here, we present a novel, highly flexible and low-cost fabrication method using a desktop digital craft plotter/cutter and technical drawing pens with tip size of 0.5 mm. The pens were used with either commercial black permanent ink for drawing fluidic brakes, or with specialty in-house formulated aqueous inks. With the permanent marker ink it was possible to create barriers on paper rapidly and in a variety of designs in a highly flexible manner. For instance, a design featuring eight reservoirs can be produced within 10 s for each μPAD with a consistent line width of brakes (%RSD < 1.5). Further, we investigated the optimal viscosity range of in-house formulated inks controlled with additions of poly(ethylene glycol). The viscosity was measured by capillary electrophoresis and the optimal viscosity was in the range of ∼3–6 mPa s. A functional test of these μPADs was conducted by the screening of antioxidant activity. Colorimetric measurements of flavonoid, phenolic compounds and DPPH free radical scavenging activity were carried out on μPADs. The results can be detected by the naked eye and simply quantified by using a camera phone and image analysis software. The fabrication method using technical drawing pens provides flexibility in the use of in-house formulated inks, short fabrication time, simplicity and low cost.  相似文献   

12.
The electrochemical detection of BPA often requires modification of electrodes to overcome BPA′s slower kinetics and higher oxidation potential. This work reports a modification-free, paper electrode based on vacuum-filtered SWCNT thin film. The prepared electrode does not need to be polished or transferred into the conducting substrates. The linear sweep voltammetric detection showed a linear response from 0.5–10 μM and 25–100 μM with the experimental LOD of 1.0 μM (S/N=3). The interference study and good recovery percentage (93–105 %) in real water samples demonstrated the method‘s selectivity. The sensor can be promising for developing a simple, low-cost, portable, and paper-based BPA monitoring system.  相似文献   

13.
This work reports a novel fabrication technique for development of channels on paper‐based microfluidic devices using the syringe module of a 3D printing syringe–based system. In this study, printing using polycaprolactone (PCL)‐based ink (Mw 70 000‐90 000) was employed for the generation of functional hydrophobic barriers on Whatman qualitative filter paper grade 1 (approximate thickness of 180 μm and pore diameter of 11 μm), which would effectively channelize fluid flow to multiple assay zones dedicated for different analyte detection on a microfluidic paper‐based analytical device (μPAD). The standardization studies reveal that a functional hydrophilic channel for sample conduction fabricated using the reported technique can be as narrow as 460.7 ± 20 μm and a functional hydrophobic barrier can be of any width with a lower limit of about 982.2 ± 142.75 μm when a minimum number of two layers of the ink is extruded onto paper. A comparison with the hydrodynamic model established for writing with ink is used to explain the width of the line printed by this system. A fluid flow analysis through a single channel system was also carried out to establish its conformity with the Washburn model, which governs the fluid flow in two‐dimensional μPAD. The presented fabrication technique proves to be a robust strategy that effectively taps the advantages of this 3D printing technique in the production of μPADs with enhanced speed and reproducibility.  相似文献   

14.
Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non-ratiometric QD-FRET transduction method. The selectivity of the hybridization assays was demonstrated by the detection of single nucleotide polymorphism.  相似文献   

15.
We developed microfluidic paper-based analytical devices (μPADs) for the chelate titrations of Ca2+ and Mg2+ in natural water. The μPAD consisted of ten reaction zones and ten detection zones connected through narrow channels to a sample zone located at the center. Buffer solutions with a pH of 10 or 13 were applied to all surfaces of the channels and zones. Different amounts of ethylenediaminetetraacetic acid (EDTA) were added to the reaction zones and a consistent amount of a metal indicator (Eriochrome Black T or Calcon) was added to the detection zones. The total concentrations of Ca2+ and Mg2+ (total hardness) in the water were measured using a μPAD containing a buffer solution with a pH of 10, whereas only Ca2+ was titrated using a μPAD prepared with a potassium hydroxide solution with a pH of 13. The μPADs permitted the determination of Ca2+ and Mg2+ in mineral water, river water, and seawater samples within only a few minutes using only the naked eye—no need of instruments.  相似文献   

16.
A novel method for electroosmotic flow (EOF) measurement on paper substrates is presented; it is based on dynamic mass measurements by simply using an analytical balance. This technique provides a more reliable alternative to other EOF measurement methods on porous media. The proposed method is used to increase the amount and quality of the available information about physical parameters that characterize fluid flow on microfluidic paper–based analytical devices (μPADs). Measurements were performed on some of the most frequently used materials for μPADs, i.e., Whatman #1 , S&S, and Muntktell 00A filter paper. Obtained experimental results are consistent with the few previously reported data, either experimental or numerical, characterizing EOF in paper substrates. Moreover, a thorough analysis is presented for the quantification of the different effects that affect the measurements such as Joule effect and evaporation. Experimental results enabled, for the first time, to establish well-defined electroosmotic characteristics for the three substrates in terms of the magnitude of EOF as funtion of pH, enabling researchers to make a rational choice of the substrate depending on the electrophoretic technique to be implemented. The measurement method can be described as robust, reliable, and affordable enough for being adopted by researchers and companies devoted to electrophoretic μPADs and related technologies.  相似文献   

17.
In this work, a simple procedure for construction of disposable electrochemical paper-based analytical devices (ePADs) by screen-printing using low-cost materials and a home craft electronic printer is proposed. The devices were constructed using liner paper as a substrate and carbon ink prepared with graphite powder and wood glue. The ePAD was evaluated as an electrochemical sensor and biosensor. The proposed conductive carbon-based ink can be easily prepared and is an eco-friendly and non-toxic material. The developed ePAD was simple to produce and can be used as a low-cost electrochemical sensor, at less than US $0.20 per device.  相似文献   

18.
In order to analyze paeoniflorin, albiflorin and their derivatives (PADs) in Paeonia Lactiflora rapidly and effectively, (+)ESI-MS(n) experiments were conducted, from which two diagnostic fragment patterns were acquired. Meanwhile, the dehydration ability of aglycones of PADs was obtained by calculating their activation energy using density functional theory, through which the unique dehydration phenomenon of benzoylalbiflorin, compared with benzoylpaeoniflorin, was interpreted. In addition, a computer-aided mass spectrometry analysis program was developed to facilitate the analysis of the unknown compound by suggesting the possible structure of the analyte.  相似文献   

19.
纸基分析芯片(纸芯片)具有成本低、便携化、操作和后处理简单无污染等优点,在临床诊断、食品质量控制和环境监测等领域有着广阔的应用前景。然而,由于难以制作性能优异的疏脂性屏障,使得纸芯片在涉及有机溶剂和表面活性剂的分析检测中,其发展受到了限制。针对当前纸芯片开发研究中存在的灵敏度较低、对有机溶剂和表面活性剂敏感等难点问题,研究人员在滤纸基底上制作出了性能优异的疏水隔离图案和高粘附疏水表面,并验证了所制备的纸芯片对涉及有机溶剂和表面活性剂的分析检测具有普适性。本文对此类普适型纸芯片的研究与应用进行评述。  相似文献   

20.
L Ge  S Wang  X Song  S Ge  J Yu 《Lab on a chip》2012,12(17):3150-3158
A novel 3D microfluidic paper-based immunodevice, integrated with blood plasma separation from whole blood samples, automation of rinse steps, and multiplexed CL detections, was developed for the first time based on the principle of origami (denoted as origami-based device). This 3D origami-based device, comprised of one test pad surrounded by four folding tabs, could be patterned and fabricated by wax-printing on paper in bulk. In this work, a sandwich-type chemiluminescence (CL) immunoassay was introduced into this 3D origami-based immunodevice, which could separate the operational procedures into several steps including (i) folding pads above/below and (ii) addition of reagent/buffer under a specific sequence. The CL behavior, blood plasma separation, washing protocol, and incubation time were investigated in this work. The developed 3D origami-based CL immunodevice, combined with a typical luminuol-H(2)O(2) CL system and catalyzed by Ag nanoparticles, showed excellent analytical performance for the simultaneous detection of four tumor markers. The whole blood samples were assayed and the results obtained were in agreement with the reference values from the parallel single-analyte test. This paper-based microfluidic origami CL detection system provides a new strategy for a low-cost, sensitive, simultaneous multiplex immunoassay and point-of-care diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号