首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A series of 2-(3?-fluoro-4?-alkoxy-1,1?-biphenyl-4-yl)-benzoxazole liquid crystals (coded as nPF(3)PBx) were prepared, where a lateral fluorine substituent, as well as methyl, chlorine and nitro terminal groups, was introduced into the molecules to investigate the effects of different polar substituents on the liquid crystal properties. The mesomorphic and photophysical properties were investigated. The results show that compounds nPF(3)PBx have enantiotropic mesophases; meanwhile, they exhibit UV–vis absorption bands with maxima at 323–326 nm and photoluminescence emission peaks at 389–395 nm, respectively. It is noted that nPF(3)PBx with terminal polar groups or electron-withdrawing groups (NO2, Cl) display higher clearing temperatures and wider mesophase range than those of the corresponding homologues with terminal non-polar groups or electron-donating groups (CH3, H). Meanwhile, compared with two lateral fluorine-substituted analogues containing 3,5-difluorophenyl unit, lateral monofluoro-substituted nPF(3)PBx display enhanced mesophase range both in heating and cooling except for terminal methyl-substituted compounds, as well as show obvious red-shifted UV–vis absorption bands and photoluminescence emission, which are attributed to the enhanced dipole–dipole interaction caused by increased dipole moment.  相似文献   

2.
Polychlorinated (hetero)arenes have shown great promise for organic optoelectronics applications. However, the harsh synthetic routes for polychlorinated compounds and the possible luminescence quenching from the compact intermolecular π–π stacking induced by chlorine atoms limit their investigations and applications in luminescent materials. Herein, two isomeric polychlorinated polycyclic aromatic hydrocarbon (PAH) compounds JY-1-Cl and JY-2-Cl consisting of rigidified aryl ketones and amine are designed and synthesized under mild conditions through nucleophilic chlorination intermediated by an electron donor-acceptor complex. Among them, as a result of the strong π–π interactions induced by chlorine atoms, JY-2-Cl exhibits bright monomer and dimer emissions with dual thermally activated delayed fluorescence (TADF) characters. Notably, compared with the non-chlorinated compounds, a high photoluminescence quantum yield is maintained after introducing multiple chlorine atoms into JY-2-Cl . The first dual-TADF organic light-emitting diodes are also successfully fabricated with maximum external quantum efficiency as high as 29.1 % by employing JY-2-Cl as emitter. This work presents a new paradigm and synthesis of polychlorinated amine-carbonyl PAHs and demonstrates the great potential of the chlorinated materials for luminescent applications.  相似文献   

3.
2-N-aminoquinazolines were prepared by consecutive SNAr functionalization. X-ray structures display the nitrogen lone pair of the 2-N-morpholino group in conjugation with the electron deficient quinazoline core and thus representing electronic push-pull systems. 2-N-aminoquinazolines show a positive solvatochromism and are fluorescent in solution and in solid state with quantum yields up to 0.73. Increase in electron donor strength of the 2-amino substituent causes a red-shift of the intramolecular charge transfer (ICT) band (300–400 nm); whereas the photoluminescence emission maxima (350–450 nm) is also red-shifted significantly along with an enhancement in photoluminescence efficiency. HOMO-LUMO energies were estimated by a combination of electrochemical and photophysical methods and correlate well to those obtained by computational methods. ICT properties are theoretically attributed to an excitation to Rydberg-MO in SAC-CI method, which can be interpreted as n-π* excitation. 7-Amino-2-N-morpholino-4-methoxyquinazoline responds to acidic conditions with significant increases in photoluminescence intensity revealing a new turn-on/off fluorescence probe.  相似文献   

4.
《Liquid crystals》2000,27(7):901-906
The title compounds were recently demonstrated to be useful as luminescent electron transport materials in organic light emitting diodes. Here, we present studies of the fluorescence of the homologues with chain lengths between 2 and 10 carbon atoms. Dilute solutions of the investigated compounds show absorption in the range between 410 and 490 nm and fluorescence between 475 and 555 nm. However, the columnar phase of the pure compounds exhibits fluorescence at considerably larger wavelength (550-650 nm) and gives larger fluorescence lifetimes. This behaviour can be explained by the formation of excimers in the mesophase. The phase transitions to the liquid crystal state are associated with a distinct change of the fluorescence intensity.  相似文献   

5.
The title compounds were recently demonstrated to be useful as luminescent electron transport materials in organic light emitting diodes. Here, we present studies of the fluorescence of the homologues with chain lengths between 2 and 10 carbon atoms. Dilute solutions of the investigated compounds show absorption in the range between 410 and 490 nm and fluorescence between 475 and 555 nm. However, the columnar phase of the pure compounds exhibits fluorescence at considerably larger wavelength (550-650 nm) and gives larger fluorescence lifetimes. This behaviour can be explained by the formation of excimers in the mesophase. The phase transitions to the liquid crystal state are associated with a distinct change of the fluorescence intensity.  相似文献   

6.
Abstract— Trimeric and hexameric solution forms of C-phycocyanin (CPC) from the cyanophyte Agme-nellum quadruplicatum have been isolated and their spectral properties compared to those obtained from single crystals. Although the absorbance peak of a suspension of small C-phycocyanin crystals is red-shifted only 7 nm relative to the solution forms, the single crystal fluorescence is red-shifted 60 nm relative to the solution forms. The crystal fluorescence spectrum exhibits a single peak at LDmax= 708 nm when excited at 514.5 or 530.9 nm and two peaks (LDmax= 661 and 708 nm) when excitation occurs at 568.2 nm. Fluorescence depolarization measurements indicate that extensive energy transfer could occur for both solution and crystal forms with the latter being dependent upon the relative orientation of the crystal with respect to the excitation dipole. Similar results were obtained with B-phycoerythrin (BPE) from the red alga Porphyridium cruentum where the single crystal fluorescence is red-shifted =50nm relative to the solution spectra with two peaks (LDmax= 583 and 617 nm) observed whose relative intensities are dependent on the excitation wavelength (LDmax 514.5 and 530.9 nm). Single crystal fluorescent lifetimes exhibited considerable shortening relative to that observed for the solution forms. The implications of these results are discussed with respect to the possible relationships of the crystalline structures to the assembly forms present within phycobilisomes.  相似文献   

7.
Borondipyrromethene (BODIPY) chromophores are composed of a functional-COOH group at meso position with or without a biphenyl ring, and their compounds with heavy iodine atoms at −2, −6 positions of the BODIPY indacene core were synthesized. The photophysical properties of the compounds were studied with steady-state absorption and fluorescence measurements. It was observed that the absorption band is significantly red-shifted, and fluorescence signals are quenched in the presence of iodine atoms. In addition to that, it was indicated that the biphenyl ring does not affect the spectral shifting in the absorption as well as fluorescence spectra. In an attempt to investigate the effect of π-expanded biphenyl moieties and heavy iodine atoms on charge transfer dynamics, femtosecond transient absorption spectroscopy measurements were carried out in the environment of the tetrahydrofuran (THF) solution. Based on the performed ultrafast pump-probe spectroscopy, BODIPY compounds with iodine atoms lead to intersystem crossing (ISC) and ISC rates were determined as 150 ps and 180 ps for iodine BODIPY compounds with and without π-expanded biphenyl moieties, respectively. According to the theoretical results, the charge transfer in the investigated compounds mostly appears to be intrinsic local excitations, corresponding to high photoluminescence efficiency. These experimental findings are useful for the design and study of the fundamental photochemistry of organic triplet photosensitizers.  相似文献   

8.
In this work, 1,4-bis(4-phenyl-1,2,3-triazole)benzene, 1,3-bis(4-phenyl-1,2,3-triazole)propane, bis(1-phenyl-1,2,3-triazole)-methylphenylsilane, and 1-ally-4-phenyl-1,2,3-triazole have been designed and synthesized via Click reaction. Fourier transform infrared spectroscopy(FT-IR) and nuclear magnetic resonance spectroscopy(NMR) were used to confirm the compounds' structures. The effect of silicon atom on the optical properties has also been studied. The UV-vis absorption wavelength of silicon-containing compound is about ca. 10 nm red-shifted when compared with that of other three compounds. The fluorescence emission bands of the compounds in CHCl_3 solutions were observed around ca. 440 nm. And the luminescent coordination compound, namely [AgL1?NO_3?3H_2O]n, based on the ligand 1-allyl-4-phenyl-1,2,3-triazole has been prepared. In addition, this complex exhibits a 1 D chain structure. The crystal structure has been determined by single-crystal X-ray diffraction, and the optical properties have been investigated by fluorescence spectrum. In summary, our work may provide new materials with luminescent property which is potentially useful in material fields.  相似文献   

9.
Five organic luminophores, 1,2,5-triphenylpyrrole (TPP) derivatives 3 a – e bearing electron-withdrawing or electron-donating groups, have been synthesized by Pd-catalyzed Suzuki coupling of 1-phenyl-2,5-di(4′-bromophenyl)pyrrole and para-substituted phenylboronic acid derivatives. They possess good thermal stabilities with high decomposition temperatures above 310 °C. Investigation of the photophysical properties of the luminogens 3 a – e indicated that they exhibited dual intense photoluminescence in both solution and the solid state due to their twisted conformations, and their fluorescence quantum yields (ΦF) were determined as 68.7–94.9 % in THF solution and 19.1–52.0 % in solid powder form. Compounds 3 a – c bearing electron-accepting groups exhibited remarkable solvatochromism with large Stokes shifts, attributable to their D-π-A structure and intramolecular charge-transfer effect. In particular, 3 a , bearing aldehyde groups, displayed an obvious red-shift of the emission band from 445 to 564 nm with increasing solvent polarity. However, no obvious solvatochromic behavior was observed for compounds 3 d , e bearing electron-donating groups. The luminophore 3 a exhibited polymorphic luminescence properties and crystallization-induced emission enhancement.  相似文献   

10.
Bodipy derivatives containing excited state intramolecular proton transfer (ESIPT) chromophores 2-(2-hydroxyphenyl) benzothiazole and benzoxazole (HBT and HBO) subunits were prepared (7-10). The compounds show red-shifted UV-vis absorption (530-580 nm; ε up to 50000 M(-1) cm(-1)) and emission compared to both HBT/HBO and Bodipy. The new chromophores show small Stokes shift (45 nm) and high fluorescence quantum yields (Φ(F) up to 36%), which are in stark contrast to HBT and HBO (Stokes shift up to 180 nm and Φ(F) as low as 0.6%). On the basis of steady state and time-resolved absorption spectroscopy, as well as DFT/TDDFT calculations, we propose that 7-9 do not undergo ESIPT upon photoexcitation. Interestingly, nanosecond time-resolved transient absorption spectroscopy demonstrated that Bodipy-localized triplet excited states were populated for 7-10 upon photoexcitation; the lifetimes of the triplet excited states (τ(T)) are up to 195 μs. DFT calculations confirm the transient absorptions are due to the triplet state. Different from the previous report, we demonstrated that population of the triplet excited states is not the result of ESIPT. The compounds were used as organic triplet photosensitizers for photooxidation of 1,5-dihydroxylnaphthalene. One of the compounds is more efficient than the conventional [Ir(ppy)(2)(phen)][PF(6)] triplet photosensitizer. Our result will be useful for design of new Bodipy derivatives, ESIPT compounds, and organic triplet photosensitizers, as well as for applications of these compounds in photovoltaics, photocatalysis and luminescent materials, etc.  相似文献   

11.
Developing molecular fluorophores with enhanced fluorescence in aggregate state for the second near-infrared (NIR-II) imaging is highly desirable but remains a tremendous challenge due to the lack of reliable design guidelines. Herein, we report an aromatic substituent strategy to construct highly bright NIR-II J-aggregates. Introduction of electron-withdrawing substituents at 3,5-aryl and meso positions of classic boron dipyrromethene (BODIPY) skeleton can promote slip-stacked J-type arrangement and further boost NIR-II fluorescence of J-aggregates via increased electrostatic repulsion and intermolecular hydrogen bond interaction. Notably, NOBDP-NO2 with three nitro groups (−NO2) shows intense NIR-II fluorescence at 1065 nm and high absolute quantum yield of 3.21 % in solid state, which can be successfully applied in bioimaging, high-level encoding encryption, and information storage. Moreover, guided by this electron-withdrawing substituent strategy, other skeletons (thieno-fused BODIPY, aza-BODIPY, and heptamethine cyanine) modified with −NO2 are converted into J-type aggregates with enhanced NIR-II fluorescence, showing great potential to convert aggregation caused emission quenching (ACQ) dyes into brilliant J-aggregates. This study provides a universal method for construction of strong NIR-II emissive J-aggregates by rationally manipulating molecular packing and establishing relationships among molecular structures, intermolecular interactions, and fluorescence properties.  相似文献   

12.
Bi-functional nanoparticles (NPs) that consist of silica-coated magnetic cores and luminescent lanthanide (Ln) ions anchored on the silica surface via organic linker molecules are reported. Compared to individual Ln ions, the hybrid NPs show a drastically enhanced photoluminescence due to the efficient ligand-to-metal energy transfer in the Ln-loaded NPs: the new bi-functional NPs could be used in a variety of biological applications involving magnetic separation and optical detection.  相似文献   

13.
Eating vegetables with pesticide residues over a long period of time causes serious adverse effects on the human body, such as acute poisoning, chronic poisoning, and endocrine system interference. To achieve the goal of a healthy society, it is an urgent issue to find a simple and effective method to detect organic pesticides. In this work, two fluorescent porous organic polymers, LNU-45 and LNU-47 (abbreviation for Liaoning University), were prepared using π-conjugated dibromopyrene monomer and boronic acid compounds as building units through a Suzuki coupling reaction. Due to the large π-electron delocalization effect, the resulting polymers revealed enhanced fluorescence performance. Significantly, in sharp contrast with the planar π-conjugated polymer framework (LNU-47), the distorted conjugated structure (LNU-45) shows a higher specific surface area and provides a broad interface for analyte interaction, which is helpful to achieve rapid response and detection sensitivity. LNU-45 exhibits strong fluorescence emission at 469 nm after excitation at 365 nm in THF solution, providing strong evidence for its suitability as a luminescent chemosensor for organic pesticides. The fluorescence quenching coefficients of LNU-45 for trifluralin and dicloran were 5710 and 12,000 (LNU-47 sample by ca. 1.98 and 3.38 times), respectively. Therefore, LNU-45 serves as an effective “real-time” sensor for the detection of trifluralin and dicloran with high sensitivity and selectivity.  相似文献   

14.
The synthesis, and liquid crystalline and photophysical properties of luminescent liquid crystalline compounds based on 1,3-bis[5-(4-alkoxyphenyl)-1,3,4-oxadiazole-2-yl]benzene (two-fold symmetry) I and 1,3,5-tris[5-(4-alkoxyphenyl)-1,3,4-oxadiazole-2-yl]benzene II (three-fold symmetry) are described. The mesophases were characterized using polarizing optical microscopy and differential scanning calorimetry. In addition, all compounds showed blue fluorescence with emission maxima between 366 and 382 nm, and good quantum yields of photoluminescence (ΦPL = 45%).  相似文献   

15.
The approach to a series of six- and seven-membered oxaboraheterocycles based on naphthalene or biphenyl backbones was developed. The key synthetic step involved Br/Li exchange in respective potassium (bromoaryl)trifluoroborates followed by quenching with selected electrophiles (CO2, DMF, Me2Si(H)Cl) and hydrolytic workup. Two ring-expanded benzoxaborole congeners were obtained by an additional reduction step with LiAlH4 or NaBH4. The obtained boracyclic compounds were characterized in detail by NMR spectroscopy and single-crystal X-ray diffraction. Specifically, biphenyl-based systems show dynamic behaviour interpreted in terms of inversion of non-planar seven-membered boraheterocycles. The acidity of the obtained compounds varies very strongly (pKa ranges from 3.1–9.6) depending on their structure. Due to the enhanced boron Lewis acidity, selected compounds were used as a basis for luminescent complexes with 8-hydroxyquinoline. A strong phase-dependent variation of emission-band maximum (480–527 nm) and photoluminescence quantum yield (10–95 %) was observed, which was rationalized in terms of specific aggregation effects.  相似文献   

16.
This article describes the synthesis, liquid crystalline and photophysical properties of luminescent liquid crystalline compounds, derived from gallic acid containing heterocyclic 1,3,4-oxadiazole. The mesophases of these compounds were characterised using polarising optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). All compounds showed high thermal stability and blue photoluminescence in solution, with emission maxima between 376 and 381 nm. For all compounds, the liquid crystalline behaviour was preserved on cooling from the isotropic state to room temperature. These characteristics make these materials good candidates for application in organic electronics.  相似文献   

17.
A novel series of blue luminescent compounds, in which three identical functional groups, such as fluorene, anthracene, and spiro-bifluorene, are linked distortedly around a perfluorocyclopentene core, have been synthesized and characterized. The introduction of a perfluorocyclopentene linkage into the molecular framework leads to an enhancement of the photoluminescence (PL) efficiency and thermal stability. All compounds exhibit intense blue photoluminescence, which has been attributed to fluorene- or anthracene-based π→π* transitions. The maximum emission wavelengths of all compounds at room temperature are in the region of 420-480 nm, with higher PL quantum efficiencies than in 9,10-diphenylanthracene. The electroluminescent (EL) properties of compound 4, 1,2-bis(9,9′-spirobifluoren-2-yl)-3,3,4,4,5,5-hexafluorocyclopentene, were investigated. A multilayer EL device with the configuration of ITO/2TNATA(60 nm)/NPB(20 nm)/ADN:2%-compound-4(35 nm)/Alq3(20 nm)/LiF(2 nm)/Al has been successfully fabricated.  相似文献   

18.
Pure organic room-temperature phosphorescence(RTP) materials have attracted wide attention owing to their excellent luminescent properties and great potential in various applications. In this work, iminostilbene and its analogues are applied to realize RTP emission by copolymerizing with acrylamide. It can be concluded that the growth of alkane chain in monomers can enhance the lifetime and photoluminescence quantum yield of RTP emission, and polymers with the larger conjugated structure of the ...  相似文献   

19.
We develop the chemistry of boron difluoride hydrazone dyes (BODIHYs) bearing two aryl substituents and explore their properties. The low-energy absorption bands (λmax=427–464 nm) of these dyes depend on the nature of the N-aryl groups appended to the BODIHY framework. Electron-donating and extended π-conjugated groups cause a redshift, whereas electron-withdrawing groups result in a blueshift. The title compounds were weakly photoluminescent in solution and strongly photoluminescent as thin films (λPL=525–578 nm) with quantum yields of up to 18 % and lifetimes of 1.1–1.7 ns, consistent with the dominant radiative decay through fluorescence. Addition of water to THF solutions of the BODIHYs studied causes molecular aggregation which restricts intramolecular motion and thereby enhances photoluminescence. The observed photoluminescence of BODIHY thin films is likely facilitated by a similar molecular packing effect. Finally, cyclic voltammetry studies confirmed that BODIHY derivatives bearing para-substituted N-aryl groups could be reversibly oxidized (Eox1=0.62–1.02 V vs. Fc/Fc+) to their radical cation forms. Chemical oxidation studies confirmed that para-substituents at the N-aryl groups are required to circumvent radical decomposition pathways. Our findings provide new opportunities and guiding principles for the design of sought-after multifunctional boron difluoride complexes that are photoluminescent in the solid state.  相似文献   

20.
Luminescent materials consisting of boron clusters, such as carboranes, have attracted immense interest in recent years. In this study, luminescent organic–inorganic conjugated systems based on o‐carboranes directly bonded to electron‐donating and electron‐accepting π‐conjugated units were elaborated as novel optoelectronic materials. These o‐carborane derivatives simultaneously possessed aggregation‐induced emission (AIE) and thermally activated delayed fluorescence (TADF) capabilities, and showed strong yellow‐to‐red emissions with high photoluminescence quantum efficiencies of up to 97 % in their aggregated states or in solid neat films. Organic light‐emitting diodes utilizing these o‐carborane derivatives as a nondoped emission layer exhibited maximum external electroluminescence quantum efficiencies as high as 11 %, originating from TADF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号