首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研发高效、稳定的电解水催化剂,我们以氧空位和磷掺杂为基础,通过原位浸泡生长和两步热处理的方法,在泡沫铁上合成具有氧空位和磷掺杂的纳米花结构作为析氢反应(HER)和析氧反应(OER)双功能电催化剂。CoFe2O4已被报道为一种很有前途的OER和氧还原反应(ORR)电催化剂,然而CoFe2O4在HER中表现出电导率差、电催化反应慢的特性。CoFe2O4中氧空位(Ov)的形成可以有效调控催化剂表面的电子结构,有助于产生更多的缺陷和空位,从而提高OER的活性。随后,引入磷原子填充在空位中,制备的P-Ov-CoFe2O4/IF在碱性电催化测试中展现出优异的HER和OER性能,在10 mA·cm-2电流密度下HER和OER过电位仅为54和191 mV,Tafel斜率分别为57和54 mV·dec-1,并具有良好的循环稳定性。  相似文献   

2.
Minimum-energy structures of O2, CO, and NO iron–porphyrin (FeP) complexes, computed with the Car–Parrinello molecular dynamics, agree well with the available experimental data for synthetic heme models. The diatomic molecule induces a 0.3–0.4 Å displacement of the Fe atom out of the porphyrin nitrogen (Np) plane and a doming of the overall porphyrin ring. The energy of the iron–diatomic bond increases in the order Fe(SINGLE BOND)O2 (9 kcal/mol) < Fe(SINGLE BOND)CO (26 kcal/mol) < Fe(SINGLE BOND)NO (35 kcal/mol). The presence of an imidazole axial ligand increases the strength of the Fe(SINGLE BOND)O2 and Fe(SINGLE BOND)CO bonds (15 and 35 kcal/mol, respectively), with few structural changes with respect to the FeP(CO) and FeP(O2) complexes. In contrast, the imidazole ligand does not affect the energy of the Fe(SINGLE BOND)NO bond, but induces significant structural changes with respect to the FeP(NO) complex. Similar variations in the iron–imidazole bond with respect to the addition of CO, O2, and NO are also discussed. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 31–35, 1998  相似文献   

3.
The nature of the chemical bond of complexes of iron and cobalt porphyrinates with ligands is studied by the quantum-chemical method in the Hartree–Fock self-consistent field approximation using the 3-21G basis set. The addition of oxygen molecule to the MP and MPIm complexes (M = Fe, Co; Im is imidazole) is established to be more favorable than water addition. However, imidazole, which is the second ligand in the MPImO2 and MPImH2O complexes (M = Fe, Co), increases the M–O2 and M–H2O binding energies for iron, but decreases them for cobalt. The Co atom is bound with the porphyrin ring more strongly than the iron atom due to the larger total overlap of the atomic orbitals. The calculations of the binding energy in the complexes demonstrate similar changes in the structures of the spatial conformation of the deoxy form (FeP + H2O) of iron porphyrinate and the oxy form (CoP + O2) of cobalt porphyrinate. This is an argument in favor of the hypothesis of hemoprotein sensor of partial oxygen stress in tissues.  相似文献   

4.
Iron is the cheapest and one of the most abundant transition metals. Natural [FeFe]‐hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale‐up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β‐FeOOH NA/Ti precursor through a low‐temperature phosphidation reaction. When applied as self‐supported 3D hydrogen evolution cathode, the FeP NA/Ti electrode shows exceptionally high catalytic activity and good durability, and it only requires overpotentials of 55 and 127 mV to afford current densities of 10 and 100 mA cm2, respectively. The excellent electrocatalytic performance is promising for applications as non‐noble‐metal HER catalyst with a high performance–price ratio in electrochemical water splitting for large‐scale hydrogen fuel production.  相似文献   

5.
《中国化学会会志》2017,64(9):1096-1103
In this work, we study cyclohexene oxidation by molecular oxygen on doped‐TiO2 . The improvement of the oxidizing capacity of titanium oxide by doping with iron oxide at different molar ratios is checked. All materials with different molar ratios (Ti/Fe = 9, 4, and 2) are prepared by the sol–gel method and fully characterized by ICP , XRD , SEM , DR /UV –vis, IR , and N2 adsorption/desorption. The results show that iron is successfully incorporated into the titanium matrix but the incorporated amount is limited. In catalytic tests, improved activity is noticed while using TiO2 in the presence of Fe2O3, which is due the improved oxidation. Conversion in the range of 21–42% depending on the presence of iron oxide was obtained with excellent yield of adipic acid (97% selectivity).  相似文献   

6.
Positively charged α‐chymotrypsin (ChT) formed a 1:1 complex with negatively charged 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphyrinato iron(III) (FeTPPS) in phosphate buffer at pH 7.4 through electrostatic interaction. In spite of the large binding constant (K=4.8×105 M ?1), FeTPPS could not completely inhibit the catalysis of ChT in the hydrolysis of the model substrate, N‐succinyl‐L ‐phenylalanine p‐nitroanilide (SPNA). The degree of inhibition (60 %) was saturated at 1.6 equivalents of FeTPPS, which indicates that covering of the active site of ChT by FeTPPS was insufficient. The enzymatic activity lowered by FeTPPS was entirely recovered for the freshly prepared sample when the porphyrin on the protein surface was detached by per‐O‐methylated β‐cyclodextrin (TMe‐β‐CD), which formed a stable 1:2 inclusion complex with FeTPPS (K1=1.26×106 M ?1, K2=6.3×104 M ?1). FeTPPS gradually induced irreversible denaturation of ChT, and the denatured ChT further lost its catalytic ability. No repairing effect of TMe‐β‐CD was observed with irreversibly denatured ChT. A new reversible inhibitor, 5,10,15,20‐tetrakis[4‐(3,5‐dicarboxyphenylmethoxy)phenyl]porphyrinato iron(III) (FeP8M), was then designed, and its inhibitory behavior was examined. FeP8M formed very stable 1:1 and 1:2 FeP8M/ChT complexes with ChT, the K1 and K2 values being 2.0×108 and 1.0×106 M ?1, respectively. FeP8M effectively inhibited the ChT‐catalyzed hydrolysis of SPNA (maximum degree of inhibition=85 %), and the activity of ChT was recovered by per‐O‐methylated γ‐cyclodextrin. No irreversible denaturation of ChT occurred upon binding with FeP8M. The kinetic data support the observation that, for nonincubated samples, both inhibitors did not cause significant conformational change in ChT and inhibited the ChT activity by covering the active site of the enzyme.  相似文献   

7.
In this work LaNiO3 perovskite-type oxide, prepared by a self-combustion method, was optimized for activity and stability as an anode material for water electrolysis. A full electrochemical study was conducted in order to kinetically characterize electrodes prepared using carbon paper as a base for porous gas-diffusion electrodes in alkaline media, regarding water oxidation and oxygen reduction reactions at room temperature. An electrode stability study was performed by potential cycling and at constant current density, using cyclic voltammetry and electrochemical impedance spectroscopy to check on stability after cycling with complementary scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) analysis of fresh and degraded electrodes. Comparison was made using nickel foam as a support for LaNiO3 deposition. Carbon instability in the potential region of interest contrasted with the lower contact resistance between the oxide and support of the Ni foam. Higher metal oxide loadings and dimensional stability were also possible.  相似文献   

8.
Iron supported catalysts containing 10 wt% of iron, as oxide, on TiO2 and Al2O3 have been prepared by the sol gel method and the traditional method based of the impregnation of the support with the metal precursor on commercial and sol-gel supports. The samples were characterised by measuring the specific area (S BET), temperature programmed reduction (TPR), infrared spectroscopy (FTIR), electrophoretic migration (IP), chemical oxygen demand (COD) and X-ray diffraction (XRD). The catalytic activity was measured in a batch reactor using ozone as oxidizing agent. It was found presence of highly dispersed iron oxide in the samples prepared by cogelation, whereas in those prepared by impregnation of the iron precursor, the dispersion was very poor. Catalytic activity indicates that phenol is degraded with a low mineralization to CO2.  相似文献   

9.
A novel ammonium perchlorate (AP)/aluminum (Al)/iron oxide (Fe2O3) nano-thermites was prepared by orderly using sol–gel, wet impregnation, and solvent-anti-solvent processes. Samples prepared in this work were characterized by scanning electron microscope (SEM), nitrogen adsorption–desorption tests, X-ray diffraction (XRD), and differential scanning calorimetric (DSC) measurements. The results showed that AP and nano-aluminum were dispersed in the pores of the iron oxide gel, resulting in a large specific surface area (84.7 m2 g?1). The XRD results showed that AP dispersed homogeneously in the energetic composites at nano-scale. DSC analyses indicate that the Al/Fe2O3 nano-thermites played a catalytic role in the thermal decomposition of AP, thus the interaction of thermite reaction was greatly enhanced by accelerated decomposition of AP. The experimental results showed that the as-prepared AP/Al/Fe2O3 nano-thermites were of high energy, making it a competitive candidate material in the field of micro-propellants.  相似文献   

10.
A sustainable photocatalyst for use with multiple purpose comprising demethylated lignin ( Fe3O4@D-wood ) was made by treatment of wood and iron oxide. Characterization followed by XRD, UV/Vis, photo-current studies, and electrochemical measurements. This material became subject of photocatalytic explorations for water treatment and material synthesis by radical photopolymerization. Exposure of Fe3O4@D-wood with artificial sunlight showed an improved activity considering photochemical oxidation of organic pollutants in the presence of H2O2. The efficient generation of reactive radicals brought this system also to photopolymerization. Here, radicals based on reactive oxygen species (ROS) generated in the catalytic cycle can be seen as the dominating species to initiate radical polymerization. A mixture of UDMA and TPGDA showed good reactivity with cumene hydroperoxide ( CHP ). Photocatalyst used for water treatment facilitates reuse for photopolymerization.  相似文献   

11.
Electrodes modified with iron porphyrin and carbon nanotubes (FeP–CNTs) were prepared and used for CO2 electroreduction. The adsorption of iron porphyrin onto the multiwalled carbon nanotubes was characterized by scanning electron microscopy and ultraviolet and visible spectroscopy. The electrochemical properties of the modified electrodes for CO2 reduction were investigated by cyclic voltammetry and CO2 electrolysis. The FeP–CNT electrodes exhibited less negative cathode potential and higher reaction rate than the electrodes modified only with iron porphyrin or carbon nanotubes. A mechanism of the synergistic catalysis was proposed and studied by electrochemical impedance spectroscopy and electron paramagnetic resonance. The direct electron transfer between iron porphyrin and carbon nanotubes was examined. The current study shed light on the mechanism of synergistic catalysis between CNTs and metalloporphyrin, and the iron porphyrin–CNT-modified electrodes showed great potential in the efficient CO2 electroreduction.  相似文献   

12.
Superparamagnetic iron oxide particles with average size less than 20 nm were prepared by chemical co‐precipitation method in the air atmosphere. After that, polydimethyldiallyl ammonium chloride (PDDA) was used for wrapping iron oxide particles to obtain the core/shell nanocomposites. The parameters influencing properties of iron oxide particles and iron oxide/PDDA nanocomposites were investigated and optimized. The prepared iron oxide and nanocomposites were characterized by X‐ray diffraction (XRD) measurement, transmission electron microscopy (TEM), particle size and Zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, and vibrating sample magnetometry (VSM), respectively. It was found that the iron oxide particles are cubic inverse spinel Fe3O4 with spherical shape. Superparamagnetic behavior of Fe3O4 with 73.114 emu/g is produced with NH4OH as precipitator, and decreased to 58.583 emu/g for Fe3O4/PDDA nanocomposites. The Zeta potential of nanocomposites is positive value. The results showed that Fe3O4/PDDA nanocomposites have excellent future using as a carrier for bonding with some negative charged particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Iron oxide modified with single- or double-metal additives (Cr, Ni, Zr, Ag, Mo, Mo-Cr, Mo-Ni, Mo-Zr and Mo-Ag), which can store and supply pure hydrogen by reduction of iron oxide with hydrogen and subsequent oxidation of reduced iron oxide with steam (Fe3O4 (initial Fe2O3)+4H2↔3Fe+4H2O), were prepared by impregnation. Effects of various metal additives in the samples on hydrogen production were investigated by the above-repeated redox. All the samples with Mo additive exhibited a better redox performance than those without Mo, and the Mo-Zr additive in iron oxide was the best effective one enhancing hydrogen production from water decomposition. For Fe2O3-Mo-Zr, the average H2 production temperature could be significantly decreased to 276 °C, the average H2 formation rate could be increased to 360.9-461.1 μmol min−1 Fe-g−1 at operating temperature of 300 °C and the average storage capacity was up to 4.73 wt% in four cycles, an amount close to the IEA target.  相似文献   

14.
The effect of the calcination temperature on the properties of supported iron oxide catalysts for hydrogen sulfide oxidation prepared by impregnation of silica with iron(III) nitrate has been studied. An increase in the calcination temperature was found to diminish the catalytic activity of the Fe2O3/SiO2 catalysts in hydrogen sulfide oxidation. This behavior can be explained by the agglomeration of iron oxide particles and by a decrease in the surface concentration of active sites. It has been shown that an increase in the calcination temperature makes the catalyst more stable towards the sulfidation of the active component (Fe2O3) to the iron disulfide phase.  相似文献   

15.
Recombinant human serum albumin (rHSA) incorporating the tetraphenylporphinatoiron(II) derivative with a covalently linked proximal base (FeP) [albumin-heme (rHSA-FeP)] is a synthetic hemoprotein, which can bind and release dioxygen (O2) reversibly under physiological conditions. The coordination structure and spin-state of the active site in rHSA-FeP with O2 and carbon monoxide (CO) were revealed by magnetic circular dichroism (MCD), resonance Raman (RR), and infrared (IR) spectroscopy. Under an N2 atmosphere, the MCD spectrum of rHSA-FeP showed the formation of the five-coordinate ferrous high-spin complex of FeP. Upon exposure of this solution to O2 or CO, the spectral pattern immediately changed to that of a six-coordinate ferrous low-spin species. The vibration stretching frequencies of the coordinated O2O2) and CO (νCO) were observed at 1158 cm−1 and 1964 cm−1, respectively. The electronic structures of the O2- and CO-adduct complexes of FeP in the hydrophobic pocket of albumin are both identical to those for FeP itself in toluene solution.  相似文献   

16.
The phase-pure cerium stannate pyrochlore (Ce2Sn2O7) has been prepared for the first time. The structure and oxidation states of both cations were carefully reviewed, and the compound was unambiguously replaced within the rare-earth stannate series. As a consequence of the low stability of trivalent cerium in oxide phases, one oxygen per formula unit could be intercalated by calcination under O2 at 400 °C, leading to the new Ce2Sn2O8 pyrochlore. This latter phase is subject to oxygen under-stoichiometry from 400 to 700 °C. However, oxygen deintercalation seems to be in competition with cerium oxide segregation at high temperature, leading to the formation of cerium deficient pyrochlore phases.  相似文献   

17.
Incorporation of different structured synthetic hemes, 5,10,15,20-tetraphenylporphyrinatoiron(II) derivetives with a covalently linked proximal base [FeP( 1 ) to FeP( 7 )], into human serum albumin (HSA), provides seven types of albumin-heme hybrids (HSA-FeP) with different O2-binding abilities. An HSA host absorbs a maximum of eight FeP molecules in each case. The obtained all HSA-FePs can reversibly bind and release O2 under physiological conditions (in aqueous media, pH 7.3, 37°C) as similar as hemoglobin and myoglobin. The difference in the fence structures did not affect the O2-binding parameters, however the axial histidine coordination significantly increased the O2-binding affinity, which is ascribed to the low O2-dissociation rate constants. The most remarkable effect of the heme structure appeared in the half-lifetime (τ1/2) of the O2-adduct complex. The dioxygenated rHSA-FeP( 4 ) showed an unusually long lifetime (τ1/2: 25 hr at 37°C) which is ca. 13-fold longer than that of rHSA-FeP( 1 ).  相似文献   

18.
The unique physicochemical properties of ordered mesoporous transition metal oxides have attracted more and more attention. The hydrolysis process of metal oxide precursors is difficult to control, and it is difficult to synthesize an ordered mesoporous transition metal oxide material using the conventional template method. Ordered mesoporous Pt/Fe3O4–CeO2 heterostructure gel materials with excellent catalytic properties were successfully prepared using aerogel technology and the chemical deposition method. The Pt/Fe3O4–CeO2 material was an n–n combined heterostructured semiconductor material which consisted of a magnetic Fe3O4 layer, a CeO2 core and Pt noble metal doped nanoparticles. A layer of Fe3O4 thin film was formed on the surface of ordered mesoporous Pt/CeO2 gel matrix material using the chemical deposition method. The intriguing heterostructural features could facilitate reactant diffusion and exposure of active sites which could enhance synergistic catalytic effects between the Pt nanoparticles and CeO2 nanoparticles. Compared with Pt/CeO2, the prepared Pt/Fe3O4–CeO2 showed enhanced catalytic activity in the reduction of 4-nitrophenol at room temperature. The catalytic activity of the heterostructure catalysts was systematically investigated using 4-nitrophenol reduction as a model reaction. The results showed that the Pt (0.1%)/Fe3O4–CeO2 sample exhibited the optimal catalytic performance toward catalytic reduction of 4-nitrophenol to 4-aminophenol. The study provided a method for the preparation of heterostructure nanocatalysts with high efficiency, which would be effective for application in various catalytic reactions.  相似文献   

19.
To use water as the source of electrons for proton or CO2 reduction within electrocatalytic devices, catalysts are required for facilitating the proton‐coupled multi‐electron oxygen evolution reaction (OER, 2 H2O→O2+4 H++4 e). These catalysts, ideally based on cheap and earth abundant metals, have to display high activity at low overpotential and good stability and selectivity. While numerous examples of Co, Mn, and Ni catalysts were recently reported for water oxidation, only few examples were reported using copper, despite promising efficiencies. A rationally designed nanostructured copper/copper oxide electrocatalyst for OER is presented. This material derives from conductive copper foam passivated by a copper oxide layer and further nanostructured by electrodeposition of CuO nanoparticles. The generated electrodes are highly efficient for catalyzing selective water oxidation to dioxygen with an overpotential of 290 mV at 10 mA cm−2 in 1 m NaOH solution.  相似文献   

20.
The large‐scale industrial production of acetic acid (HAc) from carbonylation of methanol has enabled intense research interest from direct hydrogenation of HAc to acetaldehyde (AA). Herein, a series of cerium‐iron oxide solid solution supported metallic cobalt catalysts were prepared by modified sol‐gel method and were applied in gas‐phase hydrogenation of HAc to AA. A synergistic effect between the hydrogenation metal cobalt and Ce‐Fe oxide solid solution is revealed. Specifically, oxygen vacancies provide the active sites for adsorption of HAc, while highly uniformly dispersed metallic Co adsorbs H2 and activates the reduction of HAc into AA. Moreover, the metallic Co can also assist the cyclical conversion between Fe3+/Fe2+ and Ce3+/Ce4+ on the surface of Ce1‐xFexO2‐δ supports. The unique effect substantially enhances the ability of the support material to rapidly capture oxygen atoms from HAc. It is found that the catalyst of 5% Co/Ce0.8Fe0.2O2‐δ with the highest concentration of oxygen vacancy presents the best catalytic performance (i.e. acetaldehyde yield reaches 49.9%) under the optimal reaction conditions (i.e. 623 K and H2 flow rate = 10 mL/min). This work indicates that the Co/Ce‐Fe oxide solid solution catalyst can be potentially used for the selective hydrogenation from HAc to AA. The synergy between the metallic Co and Ce1‐xFexO2‐δ revealed can be extended to the design of other composite catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号