首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《印度化学会志》2023,100(7):101022
The present study reports using waste silk fabric functionalized using Polylactic acid (PLA) and Activated charcoal for oil/solvent recovery from simulated seawater (3.5% NaCl-based water). An average of 91% separation was visible in the functionalized waste silk fabric with an efficiency up to 20 cycles towards petroleum oils/solvents from simulated seawater. Further, the functionalized waste fabric showed hydrophobic properties with a water-based contact angle of 105° and oil/solvent absorption towards petroleum oils and organic solvent, with a surface free energy of 52.46 mN m−1. The functionalized waste silk also showed permeation flux of 658, 386, and 993 L m−2 h−1, for Petrol, Diesel, and n-Hexane, respectively. The results show that PLA/Activated-charcoal engineered waste silk can be effectively applied for practical oil/solvent recovery from simulated seawater. Utilizing waste silk fabric further supports in reducing the global carbon footprints as silk does not emit and/-or produce carbon dioxide due to its green origin and generating the circular economy approach.  相似文献   

2.
Using chemically etched stainless steel mesh (SSM) as matrix, chitosan (CS) as the hydrophilic component and acrylamide as (AAm) monomer, the underwater superoleophobic membrane (PAAm/CS@SSM) for oil–water separation was prepared by free radical polymerization initiated by ultraviolet light. The composition, morphology, underwater oil contact angle, and structure of PAAm/CS@SSM were characterized by Fourier-transform infrared spectroscopy, x-ray powder diffraction, scanning electron microscopy, and confocal laser scanning microscopy. The underwater oil contact angles of PAAm/CS@SSM could reach 154.5°. When the number of oil–water cycles reached 20 times, the oil–water separation efficiency of PAAm/CS@SSM was larger than 99%. When the oil–water ratio is 1:3, 1:2, 1:1, 2:1, 3:1, the oil–water separation flux of PAAm/CS@SSM was 2096.8, 4457.9, 4735.7, 5395.7, and 3606.9 L·m·−2·h−1, respectively. When oils are n-hexane, petroleum ether, vegetable oil, and liquid paraffin, the oil–water separation efficiency of PAAm/CS@SSM was 99.0%, 97.7%, 97.2%, and 99.3%, respectively. After the wear resistance test, the PAAm/CS@SSM membrane still exhibited underwater super-oleophobicity (>150°).  相似文献   

3.
In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0°. Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h-1·m-2, which could be used to separate various organic solvents/water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.  相似文献   

4.
With the continuous improvement in living standards, the discharge of oily sewage in daily life and industry has gradually increased, causing considerable damage to the environment and also great inconvenience to people. Traditional treatment methods cannot meet the increasing demand for sewage treatment, so more efficient treatment methods need to be studied. Research on oil–water separation materials is gradually becoming intelligent, but most of these intelligent materials cannot solve the problem of bacterial growth on the surface, new antibacterial and hydrophobic materials need to be studied. Here, an inexpensive and simple method is presented to prepare an antibacterial copper mesh with pH-responsive wettability between hydrophilic and hydrophobic. First, a copper mesh with a rough surface was prepared by an oxidation method, and then the oxidized copper mesh was immersed in the prepared coating solution of stearate (SA)-TiO2 to obtain a superhydrophobic copper mesh. Scanning electron microscopy analysis showed that the modified copper mesh changed from the original smooth surface to a rough surface covered with needle-like nano-oxide wires. The SA-TiO2-coated copper mesh (STCM) has good separation efficiency (about 97%) and separation flux (about 1.1 × 105 L·m−2·h−1) for the immiscible oil–water mixture, the separation efficiency remained basically unchanged (about 97%) after 15 separation cycles, and the wettability of this can be changed by soaking in an alkaline solution at a specific pH (from 12 to 14). In addition, the prepared STCM showed good antibacterial properties against Staphylococcus aureus and Escherichia coli. This preparation strategy of STCM provides a low-cost and facile method for wastewater treatment in practical applications.  相似文献   

5.
Dithioterethiol (DTT) is a typical example of substances that contain sulfur with adverse effects on human health. Membranes-based cellulose acetate is used for the separation processes of thiols after the addition of ZnO and TiO2 nanoparticles. The measurement of permeability allows us to estimate the efficiency of membrane cleaning. The permeability increases from 8.82 L.h?1.m?2.bar?1 for CA membrane to 20.77 L.h?1.m?2.bar?1 for CA-TiO2 and 21.96 L.h?1.m?2.bar?1 for CA-ZnO membranes. For the permeability values of DTT, we noted that the CA-ZnO membrane has the highest permeability (50.66 L.h?1.m?2.bar?1). The CA-ZnO membrane changes from nanofiltration to ultrafiltration membrane. On the other hand, for the CA-TiO2 modified membrane, the permeability decreases to 6.00 L.h?1.m?2.bar?1. The CA-TiO2 membrane is in the category of reverse osmosis membranes. This variation is explained by the interaction between nanoparticles and DTT. The contact angles of the incorporated membranes decrease progressively with the addition of TiO2 or ZnO-NPs. The low contact angle with water means high hydrophilicity, indicated that the addition of TiO2 and ZnO improved the hydrophilicity of the membranes. The CA membrane had the highest contact angle with water of 92.64 ± 1.5°. After the addition of 0.1 g of TiO2 or ZnO, the contact angle of CA-TiO2 and CA-ZnO was reduced to 86.7 ± 0.2° and 70.51 ± 1.5°, respectively. Both TiO2 and ZnO caused strong hydrophilicity of membranes. From the elimination rates of DTT, it is concluded that there are optimal conditions of (1) Pressure P = 2 bars, (2) pH = 10 and (3) DTT concentration = 2 mM.  相似文献   

6.
Superhydrophobic polycaprolactone (PCL) membranes with hierarchical structure were fabricated via alternate electrospinning/electrospraying techniques. Electrospun PCL/methyl silicone oil (PCL/MSO) nanofibers were employed as substrate. PCL/MSO‐PCL microspheres (PCL/MSO‐PCLMS) hierarchical membrane was prepared via electrosprayed PCLMS as an additional layer on the substrate. Field emission scanning electron microscopy images showed the formation of hierarchical PCL/MSO‐PCLMS membranes. Compared to pure PCL fibers substrate (120 ± 1.3°), the water contact angle (WCA) of MSO‐modified PCL membrane was 142 ± 0.7°. The most interesting observation was that the WCA of PCLMS without any modification could be achieved to 146 ± 2.8°. On this basis, PCL/MSO‐PCLMS hierarchical membrane possessed superhydrophobic surface with 150 ± 0.6° of WCA. The excellent surface roughness and air‐pocket capacity of hierarchical membranes would make the membranes more hydrophobic. The maximum oil (n‐hexane) adsorption capacity of PCL/MSO‐PCLMS membrane was 32.53 g g?1. Oil–water separation efficiencies of the superhydrophobic membranes were all higher than 99.93% after 10 cycles. The hierarchically structured PCL superhydrophobic membranes indicate the potential applications of environmentally friendly biopolymers as separation membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 421–430  相似文献   

7.
Inorganic nanowire aerogel with low density, high specific surface area and high porosity has received increasing attention in the field of materials physics and chemistry because of not only the unique structural and physical features of metallic oxide but also low cost, environmental friendliness and earth abundant of precursor materials. In this work, MnO2 nanowire aerogels (MNA) with ultralow density, and stable 3D hierarchical structures was successfully fabricated by freeze‐drying processes using MnO2 nanowire as building blocks. The length of MnO2 nanowires exceeds 100 μm, making it easier to cross‐link and self‐assemble into a 3D network of aerogels, and the acid and alkali resistance of MnO2 enables it to adapt to extreme environments. Simultaneously, the monodispersed MnO2 nanowire was prepared by the hydrothermal method, followed by acid treatment. To obtain superhydrophobic properties and achieve selective oil adsorption, the surfaces of nanowire aerogels were grafted the hydrophobic groups with low surface energy via vapor deposition. It is indicated that the obtained 3D hierarchical MNA show both superhydrophobic and super‐lipophilic properties simultaneously with a high‐water contact angle of 156°  ±  2° and an oil contact angle of 0°. And the MNA exhibited a high oil adsorption capacity of 85–140 g/g, thereby indicating its potential applications in oil/water separation. More importantly, the resulting MNA can be recycled ten cycles without loss of oil absorption capacity (more than 120 g/g). The results presented in this work demonstrate that the as‐prepared nanowire aerogel may find applications in chemical separation and environmental remediation for large‐scale absorption of oils from water.  相似文献   

8.
A novel ultra-light, superhydrophobic graphene based carrageenan sponge (GCS) absorbent was synthesized by one pot hydrothermal method, for the use of selective adsorption of oils and organic solvents from their water mixtures. The GO nanosheets were reacted in the presence of formaldehyde by the insertion of carrageenan, forming hydrophobic cross-linked structure in between them. The structure and properties of this GCS are well characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Thermal gravimetric analysis, Scanning electron microscopy, and Water contact angle. The as-prepared GCS has good thermal stability (400 °C), low density (20 mg/cm−3), excellent hydrophobicity (water contact angle of 136.24°), and selective absorption capacity (25.2–35.95 g/g) of oils and organic solvents from their water mixtures. GCS has excellent oil sorption capacity in the range of 25.2–50 g of oil per gram of adsorbent. GCS could be easily reused by simple solvent treatment. Therefore, the adsorption capacity still retained even after 10 cycles. The present work suggests that GCS using biobased resources has high potentials for many widespread applications in industry to control environmental pollution.  相似文献   

9.
《中国化学快报》2020,31(10):2619-2622
Developing an effective and mechanically durable biomimetic membrane for the separation of highly emulsified aqueous oil is significant but challenging owing to its low water flux and serious membrane fouling. In this work, a biomimetic membrane with superhydrophobicity and superoleophilicity was rationally developed via co-electrospinning of polysulfonamide/polyacrylonitrile (PSA/PAN) emulsion solution, followed by decorating of α-Fe2O3 nanowire onto the membrane surface to create membrane roughness, and grafting of 1H,1H,2H,2H-perfluorododecyltrichlorosilane (FTCS) to lower membrane surface free energy. Benefiting from the nanowire-wrapped rough membrane structure and the low surface free energy FTCS, the resultant membrane showed superhydrophobicity with a high water contact angle (WCA) of 156°, superoleophilicity with a low oil contact angle (OCA) of 0°, which can separate the highly emulsified aqueous oil with an ultrahigh permeation flux over 7000 L m−2 h-1 and high separation efficiency of about 99%. Significantly, the biomimetic membrane also displayed robust stability for long-term separation owing to its advantage of antifouling property, showing great potential applications in large-scale aqueous oil treatment.  相似文献   

10.
Tetrahydrofuran (THF) is a strong aprotic solvent, commonly used in the pharmaceuticals industry due to its broad solvency for both polar and non-polar compounds. THF and water form a homogeneous azeotrope at 5.3 wt.% water thus simple distillation is not feasible to dehydrate THF below this concentration. Pervaporation offers a solution since it is not governed by vapour–liquid equilibria. However many polymer-based pervaporation membranes are cast utilizing THF as the casting solvent and so these membranes have a tendency to swell excessively in its presence. This results in poor separation performance and poor long-term stability and thus renders these membranes unsuitable for THF dehydration.In this study, a new membrane available from CM Celfa, CMC-VP-31 has been tested for the dehydration of THF. The membrane shows excellent performance when dehydrating THF with a flux of over 4 kg m−2 h−1 when dehydrating THF containing 10 wt.% water at 55 °C dropping to 0.12 kg m−2 h−1 at a water content of 0.3 wt.%. The permeances of water and THF in the membrane were calculated to be 11.76 × 10−6 and 7.36 × 10−8 mol m−2 s−1 Pa−1, respectively, at 25 °C and found to decrease in the membrane with increasing temperature to values of 6.71 × 10−6 and 1.63 × 10−8 mol m−2 s−1 Pa−1 at 55 °C. The flux and separation factor were both found to increase with an increase in temperature thus favouring the operation of CMC-VP-31 at high temperatures to optimize separation performance.  相似文献   

11.
We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low‐surface‐energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water.  相似文献   

12.
Summary: The objective of this research was to verify the influence of adding increasing amounts of lauric acid on the functional properties of homogenized films made from gelatin, triacetin and a blend of palmitic and stearic acids. The films were characterised with respect to their visual aspect, water vapour permeability (WVP), water solubility, mechanical properties (tensile strength and percent elongation), oxygen permeability (O2P), opacity (OP) and melting and glass transitions temperatures. The films produced were malleable and macroscopically homogeneous. The addition of 1% of lauric acid to the film of gelatin, triacetin and blend of palmitic and stearic acids (5.84 ± 0.31 gmm · m−2 dkPa) caused a slight decrease in WVP. The additions of 2.5% (5.70 ± 0.76 gmm · m−2 dkPa), 5% (5.38 ± 0.64 gmm · m−2 dkPa) and 10% (4.50 ± 0.55 gmm · m−2 dkPa) of lauric acid were sufficient to make a significant difference in the WVP at the higher levels used. As compared to the gelatin and triacetin film, the addition of lauric acid at all the concentrations studied resulted in a slight increase in the film solubility. The addition of hydrophobic substances to gelatin/triacetin films (15.26 ± 0.28 cm3 · µm · m−2 dkPa) favoured an increase in O2P permeability, this effect being greater in the films made from gelatin, triacetin, blend of palmitic and stearic acids and 10% lauric acid (24.48 ± 0.07 cm3 · µm · m−2 dkPa). The increasing addition of lauric acid significantly reduced the tensile strength and increased elongation of the films composed of gelatin, triacetin and blend that being more evident at the concentrations of 5% (67.58 ± 1.23 MPa and 11.45 ± 0.57%) and 10% (63.50 ± 1.56 MPa and 12.90 ± 0.57%). The addition of 1% (OP, 27%) and 10% (OP, 28%) of lauric acid induced no visible effect on the opacity of the films. The thermogrammes showed three transitions for the gelatin/triacetin/stearic-palmitic blend/1% lauric acid films (−57.42 °C, 23.74 °C and 44.11 °C) and two for the gelatin/triacetin/stearic-palmitic acids blend/10% lauric acid films (−56.22 °C and 17.35 °C). As observed by DSC, the addition of fatty acids resulted in the appearance of more than one melting peak for all films in relation to the gelatin and triacetin film.  相似文献   

13.
Here, polyvinylidene fluoride (PVDF) membranes were fabricated via non-solvent induced phase separation (NIPS) using dopamine (DA) and polyethyleneimine (PEI) as the hydrophilic additives, which has a loose surface and somewhat improved hydrophilicity. Then nanofiltration (NF)-like thin-film composite forward osmosis (TFC FO) membrane with a loose polyamide (PA) active layer on the blend membrane was synthesized via the interfacial polymerization. The as-prepared NF-like TFC FO membrane exhibited a high water flux (Jw) of 29.98 L m−2 h−1 and a much low specific salt flux (Js/Jw) of 0.018 g/L, when 0.6 M NaCl was used as draw solution (DS). It had a superior rejection of malachite green (99.6% ± 0.1%) and a low rejection of NaCl (27.4% ± 4.2%), when filtrated malachite green/NaCl mixture solution in active layer-facing draw solution (AL-FS) mode. The results provide new insights on the design and preparation of FO membranes of selective separation for dyes from salty water.  相似文献   

14.
Porous silica–zirconia membranes were fabricated by the sol–gel techniques to study their stability against water and the pervaporation performance of aqueous solutions of organic solvents. Zirconia (10–70 mol%) was added to silica to obtain silica–zirconia composite membranes by firing at 400–500 °C for pervaporation tests with organic solvent/water mixtures, such as iso-propyl alcohol (IPA)/water and tetrahydrofuran (THF)/water mixtures at their normal boiling points.The membrane coatings have been done effectively by the hot-coating methods proposed previously. Boiling water treatments introduced in the coating processes have made the membranes quite stable even in the high water concentration region of aqueous organic solutions at their normal boiling points. Zirconia contents larger than about 40 mol% have made the silica–zirconia membranes quite stable. The membranes of zirconia contents less than about 30 mol% were found not stable in a dilute aqueous solution of IPA. The membranes fabricated by the conventional dip-coating methods with slow drying were not stable against water because of the probable segregation of silica and/or silica-rich phases during drying.The membranes fired at lower temperature (400 °C) gave a higher water flux of around 500 mol m−2 h−1 (9 kg m−2 h−1) with a separation factor larger than 1500 at 10 wt.% of water in the boiling feed of IPA/water mixture, for example.  相似文献   

15.
In this study, antimicrobial pigment cinnabarinic acid (CA) was produced from Pycnoporus cinnabarinus in laboratory‐scale batch cultures. Magnetic poly(ethylene glycol dimethacrylate‐N‐methacryloyl‐l‐tryptophan methyl ester) [m‐poly(EGDMA‐MATrp)] beads (average diameter = 53–103 µm) were synthesized by copolymerizing of N‐methacryloyl‐l‐tryptophan methyl ester (MATrp) with ethylene glycol dimethacrylate (EGDMA) in the presence of magnetite (Fe3O4) and used for the adsorption of CA. The m‐poly(EGDMA‐MATrp) beads were characterized by N2 adsorption/desorption isotherms (Brunauer Emmet Teller), X‐ray photoelecron spectroscopy, scanning electron microscopy, infrared spectroscopy, thermal gravimetric analysis, electron spin resonance and swelling studies. The efficiency of m‐poly(EGDMA‐MATrp) beads for separation of CA from culture fluid was evaluated. The effects of pH, initial concentration, contact time and temperature on adsorption were analyzed. The maximum CA adsorption capacity of the m‐poly(EGDMA‐MATrp) beads was 272.9 mg g−1 at pH 7.0, 25 °C. All the isotherm data can be fitted with the Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. The adsorption process obeyed pseudo‐second‐order kinetic model. Thermodynamic parameters ΔH = 5.056 kJ mol−1, ΔS = 52.44 J K−1 mol−1 and ΔG = −9.424 kJ mol−1 to ‐11.27 kJ mol−1 with the rise in temperature from 4 to 40 °C indicated that the adsorption process was endothermic and spontaneous. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Calcium alginate-chitosan (CA/CS) blended membranes were prepared and crosslinked with maleic anhydride (MA) for the pervaporation (PV) separation of ethylene glycol (EG)/water mixtures at 30°C. The structure and properties of blend membranes were studied with the aid of FTIR, XRD, TGA, and SEM. The effect of experimental parameters such as feed composition, membrane thickness, and permeate pressure on separation performance of the MA crosslinked membranes were determined in terms of flux, selectivity, and pervaporation separation index. Sorption studies were carried out to evaluate the extent of interaction and degree of swelling of the blend membranes in pure, as well as in binary mixtures. The experimental results suggested that the crosslinked membrane (M-CA/CS) exhibited a good selectivity of 302 at a normalized flux of 0.38 kg.m? 2.h? 1.10 μ m at 30°C for 96.88 wt% EG aqueous solution.  相似文献   

17.
The various morphology and structure microspheres were fabricated via one‐step single‐solvent electrospraying of hydrophilic and hydrophobic block modified copolymer of polycaprolactone (PCL). A honeycomb‐like hierarchical structure microspheres of PCL‐b‐PTFOA(4h) and abundant nanometer pores of PCL‐b‐PEG400 microspheres were obtained due to the solvent evaporation, thermally and polymer diffusion‐induced phase separation effect. Furthermore, a superhydrophobic coatings and robust superhydrophobic‐coated cotton woven fabric surfaces were prepared by using PCL‐b‐PTFOA(4h) microspheres with hierarchical structure and low surface energy. The contact angle (CA) and sliding angle (SA) of PCL‐b‐PTFOA(4h) microspheres‐coated cotton woven fabric surfaces reached 164.4 ± 5.5° and 6.8 ± 0.5°, respectively, which allows for self‐cleaning. The self‐cleaning test demonstrated that the coated superhydrophobic surface could shed aqueous dyes and dust without any trace. The superhydrophobic‐coated fabric shows good soaping fastness against mechanical abrasion without significant reduction of CA. This electrospraying coating of block copolymers can provide a simple, facile, and promising technique for producing multifunctional textiles.  相似文献   

18.
The diffusion of water into cylinders of polyHEMA and copolymers of HEMA with THFMA, BMA and CHMA were studied over a range of copolymer compositions. The diffusion of water into the polymers was found to follow a Fickian, or case I mechanism. The diffusion coefficients of water were determined from mass measurements and NMR imaging studies. They were found to vary from 1.7 ± 0.2 x 10−11 m2 s−1 for polyHEMA at 37°C to lower values for the copolymers. The mass of water absorbed at equilibrium relative to the mass of dry polymer varied from 52-58 wt% for polyHEMA to lower values for the copolymers.  相似文献   

19.

In order to map the thoron prone areas of the coastal region of Kollam district, a well known HBRA of south India, comparative study of radon and thoron exhalation rate was conducted. The in situ measurement of radon and thoron exhalation has been taken. These studies were correlated with the gamma radiation level. The average value of thoron exhalation is found to 5.55 ± 1.35 Bq m−2 s−1 along the coastal areas and the radon exhalation rate is found to 107.6 ± 32 Bq m−2 h−1. The value of thoron exhalation was found 12 times greater than the global values in Neendakara and Chavara region and about 6 times greater in the Alappad region.

  相似文献   

20.
Superhydrophobic porous membranes with interconnected open structures for effective treatment oily wastewater have gradually drawn researchers’ attentions owing to frequent occurrence of organics leakage accidents. In this paper, we successfully fabricated superhydrophobic flower-like Cu3(PO4)2·2H2O nanosheets on copper mesh surface via in-situ growth strategy and silane coupling agent (A151) hydrophobic modification. Specifically speaking, commercial copper mesh served as substrate and Cu could react with (NH4)2S2O8 and Na2HPO4, forming flower-like micro-nanostructure. As-synthesized materials were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD). In addition, chemical, mechanical stability and durability of as-prepared materials were also investigated under different condition. The relevant experiment results demonstrated that flower-like Cu3(PO4)2·2H2O nanosheets successfully grew on copper mesh surface, resulting in the formation of rough structure. Modified copper mesh showed superhydrophobic and superoleophilic properties simultaneously with water contact angle (CA) of 151.24° and oil contact angle of 0°, respectively. The as-prepared materials could be used to separate oily wastewater with high separation efficiency (above 95.0%). The mechanism of oil–water separation was investigated in detail based on positive and negative capillary effect. High separation efficiency, excellent stability and durability of superhydrophobic copper mesh make it one of best promising separation candidates for wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号