首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
Previous work on the electron impact induced loss of hydrogen cyanide from the radical cations of cyanobenzene has revealed that ring opening is important in the formation of the corresponding [C6H4]+ ˙ ions. Photodissociation experiments now show that these [C6H4]+ ˙ ions and those generated from 2-ethynylpyridine, 1,3-hexadiyn-6-nitrile and 1,2-diiodobenzene all photodissociate in the visible region to [C4H2]+ ˙. The corresponding photodissociation spectra are all the same and have a maximum at about 370 nm, in agreement with spectra of ions with three conjugated double or triple bonds. Owing to the high reactivity, the low photodissociation rate and, possibly, the internal energy of the ions, the photodissociation kinetics are too complicated to be solved. The experiments nevertheless show that at least a major fraction of the [C6H4]+ ˙ ions has a ring-opened structure. This conclusion is supported by MNDO calculations, which indicate that the heats of formation of the possible acyclic structures are about 150 kJ mol?1 lower than those of the o-, m- and p-benzyne structures.  相似文献   

2.
The structure and decomposition of the [C7H7]+ ions produced by electron-impact from o-, m- and p-chlorotoluene, o-, m- and p-bromotoluence, and p-iodotoluence, have been investigated. By determining the relative abundance of normal and metastable ions, these [C7H7]+ ions at electron energy of 20 eV are shown to be so-called ‘tropylium ions’. The amount of the internal energy of the [C7H7]+ ion estimated by the relative ion abundance ratios, ? [C5H5]+/[C7H7]+ and m*/[C7H7]+ for the decomposition \documentclass{article}\pagestyle{empty}\begin{document}$ [{\rm C}_{\rm 7} {\rm H}_{\rm 7}]^ + \mathop \to \limits^{m^* } [{\rm C}_{\rm 5} {\rm H}_{\rm 5}]^ + + {\rm C}_{\rm 2} {\rm H}_{\rm 2} $\end{document}, is in the order iodotoluene > bromotoluene > chlorotoluene. The heats of formation of the activated complexes for the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ [{\rm C}_{\rm 7} {\rm H}_{\rm 7}]^ + \mathop \to \limits^{m^* } [{\rm C}_{\rm 5} {\rm H}_{\rm 5}]^ + + {\rm C}_{\rm 2} {\rm H}_{\rm 2} $\end{document} were estimated. The values suggest that the decomposing [C7H7]+ ions from various halogenotoluenes are identical in structure.  相似文献   

3.
[CnH2n?3]+ and [CnH2n?4]+·(n = 7, 8) ions have been generated in the mass spectrometer from CnH2n?3 Br (n = 7, 8) precursors and from two steroids. The relative abundances of competing ‘metastable transitionss’ indicate (partial) isomerization to a common structure (or mixture of structures) prior to decomposition in most examples of all four types of ions. In contrast, [C8H10O]+· and [C8H12O]+· ions, generated from different sources as molecular ions and by fragmentation of steroids, do not decompose through common-intermediates.  相似文献   

4.
Compounds C6H5X(X ? F, Cl, Br, NO2, CN, OCH3) have been studied under chemical ionization conditions with ammonia as reagent gas. A pulsed electron beam and time resolved ion collection has allowed the determination of the reaction leading to the formation of [C6H5NH3]+ (m/z 94). [NH4]+ reacts with C6H5X(X ? F, Cl, Br) to yield m/z 94 but C6H5X (X ? CN, NO2) forms this ion only by reactions involving either [NH3]+ or [C6H5X]+. C6H5OCH3 does not form m/z 94.  相似文献   

5.
The mass spectra of diethyl phenyl phosphates show substituent effects with electron-donating groups favouring the molecular ion M+˙, and the [M? C2H4]+˙, [M – 2C2H4]+˙ and [XPhOH]+˙ ions. The [PO3C2H6]+ (m/z 109) and [PO3H2]+ (m/z 81) ions are favoured by electron-withdrawing groups. Results suggest that the formation of the [XPhC2H3]+˙ ion involves rearrangement of C2H3 to the position ortho to the phosphate group. Ortho effects are also observed.  相似文献   

6.
For compounds C6H5X (X?Cl, Br, I) under chemical ionization conditions, methylamine causes ipso substitution of X by [NH2CH3]+ and by [NH2]+˙. C6H5F is less reactive; it gives some [C6H5NH2]+˙. Nitrobenzene gives an adduct ion [M+CH3NH3]+, a reduction product ion [C6H5NO2]+˙, and an ion at m/z93, probably a substitution product [C6H5NH2]+˙, but no [C6H5NH2CH3]+. It is also shown that the ion m/z94, formed from nitrobenzene with ammonia as reagent gas, is a substitution product rather than a reduction product ion. Carbonyl compounds C6H5. CO. X give adduct ions and some substitution, mainly [C6H5NH2]+˙.  相似文献   

7.
From the mass-analysed ion kinetic energy spectra of labelled ions, kinetic energy releases and thermodynamic data, it is proved that protonated n-propylbenzene (1) isomerizes into protonated isopropyl benzene (2). It is also shown that the dissociation of the less energetic metastable ions of (2), leading to [iso-C3H7]+ and [C6H7]+ product ions, is preceded by H exchange. This H exchange involves two interconverting ion-neutral complexes [C6H6, iso-C3H7+] (2π) and [C6H7+, C3H6] (2α).  相似文献   

8.
Appearance energies for [C7H7]+ and [C6H5]+ fragment ions obtained from methylphenol isomers were measured at the threshold using the electron impact technique. Different processes for the formation of the ions are suggested and discussed. Metastable peaks were detected and the kinetic energies released were determined. The results indicate that [C7H7]+ ions are formed from metbylpbenois with both benzyl and tropylium structures, whereas [C6H5]+ ions are formed with the phenyl structure at the detected thresholds. Kinetic energies released on fragmentation of reactive [ C7H7]+ and [C6H5]+ ions were used as a probe for the structure of the ions at 70 eV.  相似文献   

9.
In contrast to an earlier report,1 the collisonally induced dissociation of protonated 2-propanol and t-butyl alcohol yields spectra that are indistinguishable from those of the corresponding [C3H7/H2O]+ and [C4H9/H2O]+ ions generated by the (formal) gas phase addition reactions in a high pressure ion source of [s-C3H7]+ and [t-C4H9]+ ions with the n-donor H2O. Similarly, [s-C3H7/CH3OH]+ ions generated by both gas phase protonation of n- and s-propyl methyl ethers and addition reactions of [C3H7]+ to CH3OH display mode-of-generation-independent collisionally induced dissociation characteristics. However, analysis of the unimolecular dissociation (loss of propene) of the [C3H7/CH3OH]+ system, including a number of its deuterium, 13C- and 18O-labelled isotopomers, supports the idea that prior to unimolecular dissociation, covalently bound [C3H7- O(H)CH3]+ ions intercovert with hydrogen-bridged adduct ions, analogous to the behaviour of the distonic ethene-, propene- and ketene-H2O radical cations.  相似文献   

10.
On the basis of unimolecular and collisionally activated decompositions, as well as their charge stripping behaviour, [C7H8]+˙ and [C7H8]2+ ions from a variety of precursors have been studied. In particular, structural characteristics of molecular ions of toluene, cycloheptatriene, norborna-2,5-diene and quadricyclane have been compared to those of [C7H8]+˙ and [C7H8]2+ rearrangement fragment ions obtained from n-butylbenzene, 2-phenylethanol and n-pentylbenzene. Severe interferences from [C7H7]2+˙ ion fragmentations have been observed and rationalized.  相似文献   

11.
The doubly-charged ion mass spectra of some hydrocarbons, including a variety of structural types, have been obtained by a new technique in which doubly-charged ions are charge exchanged with neutral molecules and so separated from singly-charged ions. The spectra show strong similarities, independent of hydrocarbon structure; characteristic ions include [CmH2]++ (m = 2 to 5), [CnH6]++(n > 6), [C10H8]++, [C12H8]++, [C11H10]++, [C7H7]++·, [C9H7]++· and [C13H11]++·. The fragmentation pattern of 2-phenylnaphthalene has been reconstructed, based on observed reactions of metastable doubly-charged ions to give fragment doubly-charged ions. In addition, we examined metastable ion fragmentations leading to two singly-charged ions for some of the characteristic ions, using several compounds. The value of doubly-charged ion mass spectra of hydrocarbons appears to lie in the information they provide on ion structures; this information was sufficient to permit the proposal of structures for the major ions encountered in this study.  相似文献   

12.
The mass spectra of several alkyl phenyl tellurides, C6H5TeR (R = CH3, CD3, C2H5, n-C3H7, i-C3H7 and n-C4H9) have been studied with special emphasis on the fragmentation patterns involving cleavage of the alkyl and aryl tellurium–carbon bonds. Each compound exhibited intense parent ions. The rearrangement ions [C6H6Te]+? and [C6H6]+? were found in the spectra of phenyl ethyl and higher tellurides. Two other rearrangement ions [HTe]+ and [C7H7]+ were observed in the spectrum of each compound. Examination of the mass spectrum of phenyl methyl-d3 telluride demonstrated that the [HTe]+ ions derive hydrogen from the phenyl group.  相似文献   

13.
The ion [C3H5]+ generated in a chemical ionization source by a variety of methods, including protonation and charge exchange, exhibits a metastable peak for H2 loss which is two orders of magnitude weaker than that formed in an electron impact source. The stable [C3H5]+ ions generated by electron impact and chemical ionization undergo collision-induced dissociation to a comparable extent, both losing H2 by only one of the two competitive mechanisms observed for metastable ions. In contrast to the behavior of [C3H5]+, the molecular ions of p-substituted nitrobenzene, generated by charge exchange at high source pressure, yield composite metastable peaks for NO loss which are very similar in shape and intensity to those generated by electron impact. The contrasting behavior of the metastable ions extracted from high pressure ion sources in the two systems may be due to differences in the efficiencies of quenching of the ionic states responsible for fragmentation as metastable ions. It is noteworthy that the NO loss reactions require considerably lower activation energies than does the H2 loss reaction.  相似文献   

14.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

15.
The mass spectra of norbornene, nortricyclene and deuterium labeled derivatives thereof have been studied. The appearance potentials of the ions [C7H10], [C7H9]+, [C6H7]+ and [C5H6] have been determined for both compounds and heats of formation of the hydrocarbons have been estimated. Detailed fragmentation schemes are proposed for the molecular ions and it is concluded that they dissociate by essentially different mechanisms which do not involve common intermediates. The structures and energy contents of the primary fragment ions are discussed in detail by comparing energetics, labeling experiments and metastable ion abundances.  相似文献   

16.
The extent of isomerization of [C9H10] ions, with lifetimes of approximately 10?11 and 10?6 s has been investigated using field ionization, collisionally activated dissociation and charge stripping techniques. The [C9H10] ions which were investigated included the molecular ions of α-methylstyrene, β-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, indan, cyclopropylbenzene, allylbenzene and the product of water loss from 3-phenylpropanol. The field ionization spectra of all the C9H10 hydrocarbons were different indicating that isomerization to a common ion structure had not occurred to a measurable extent for ions with lifetimes of approximately 10?11 s. Collisionally activated dissociation and charge stripping results indicated that most of the [C9H10] ions continued to maintain unique ion structures (or mixtures of structures) at ion lifetimes of 10?6 s. Possible exceptions are the [C9H10] ions from allylbenzene and cyclopropylbenzene which gave indistinguishable collisionally activated dissociation and charge stripping spectra.  相似文献   

17.
It is shown by ion cyclotron resonance measurements that ion/molecule reactions, leading to substitution or reduction product ions from chloro- and nitrobenzene with the title amines, are those between the molecular ions [RNH2]+ or [C6H5X]+˙ and their respective counterparts C6H5X or RNH2. The protonated reagent gas ions [RNH3]+ are not involved in these reactions. In the case of nitrobenzene, adduct ions [C6H5NO2·RNH3]+ do not decompose within the time scale of the measurements. The results obtained are compared with those found under chemical ionization conditions.  相似文献   

18.
Collisional activation spectra of [C8H8]+·, [C8H8]2+, [C6H6]+· and [C6H5]+ ions from fifteen different sources are reported. Decomposing [C8H8]+· ions of ten of these precursors isomerise to a mixture of mainly the cyclooctatetraene and, to a smaller extent, the styrene structure. Three additional structures are observed with [C8H8]+· ions from the remaining precursors. [C8H8]2+., [C8H8]+·, [C6H6]+· and [C6H5]+· ions mostly decompose from common structures although some exceptions are reported.  相似文献   

19.
An energetic study of the production of [C7H8N]+ and [C6H7]+ fragment ions from o-toluidine and N-methylaniline is reported. The mechanisms for the formation of the ions are suggested. Metastable peaks associated with the formation and fragmentation of reactive [C7H8N]+ and [C6H7]+ ions were detected and kinetic energy released were determined. The results indicate that the [C7H8N]+ ion is formed at threshold from o-toluidine with an aminotropylium structure whereas for N-methylaniline the ion is formed with anN-phenylmethaniminium structure. [C6H7]+ ions are believed to be formed at threshold from the two precursors with a protonated benzene structure.  相似文献   

20.
Additional evidence for the rearrangement of the 1- and 3-phenylcyclobutene radical cations, their corresponding ring-opened 1,3-butadiene ions and 1,2-dihydronaphthalene radical cations to methylindenetype ions has been obtained for the decomposing ions by mass analysed ion kinetic energy spectroscopy (MIKES). The nature of the [C9H7]+ and [C10H8] daughter ions arising from the electron ionization induced fragmentation of these [C10H10] precursors has been investigated by collisionally activated dissociation (CAD), collisional ionization and ion kinetic energy spectroscopy. The [C9H7]+ produced from the various C10H10 hydrocarbons are of identical structure or an identical mixture of interconverting structures. These ions are similar in nature to the [C9H7]+ generated from indene by low energy electron ionization. The [C10H8] ions also possess a common structure, which is presumably that of the maphthalene radical cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号