首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass Spectra of unsubstituted, 2-methyl-, 3-methyl and 2,3-dimethylchromones were examined. These compounds showed [RDA]+˙ and [RDA + H]+ ions as characteristc ions, together with [M? H]+,[M? CO]+˙,[M? CHO]+ and [RDA? CO]+˙ ions. Based on deuterium labelling experiments and measurement of metastable peaks by the ion kinetic energy defocusing technique, the origin of transferred hydrogen in the [RDA + H]+ ion was clarified. The mechanism of the [RDA + H]+ ion formation is discussed.  相似文献   

2.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The mass spectral fragmentations of methyl mono- and dichlorobutanates have been studied. Deutrium labelling and metastable ion analysis were used to elucidate the fragmentation mechanisms. The molecular ion peaks of the esters are weak and show only in the spectra of the monochloro isomers. A McLafferty rearrangement gives the base peaks in the spectra of methyl 2-chloro-, 4-chloro- and 4,4-dichlorobutanoate; α-cleavage, [COOCH3]+, in methyl 2,2- and 2,4-dichlorobutanoate; [M? Cl]+, in methyl 3-chlorobutanoate; [M? Cl? HCl]+, in methyl 3,4-dichlorobutanoate; [M? Cl? CH2CO]+, in methyl 3,3-dichlorobutanoate and [M? Cl? COOCH3], in methyl erythro- and threo-2,3-dichlorobutanoate. The mass spectra of the stereoisomers are nearly identical, the loss of a chlorine atom and the McLafferty rearrangement giving the higher peaks in the spectrum of the threo form.  相似文献   

4.
Hydrozen randomization precedes the formation of M ? H· and M ? CH3· species from the stilbene molecular ion at 15 eV. The carbon atom involved in the M ? CH3· elimination originates randomly from the whole molecule. The [M ? 15] ion (m/e 165) in the spectra of stilbene and 9,10-dihydrophenanthrene is produced from a common ion.  相似文献   

5.
It has been noticed that the major part of the loss of ?H from the molecular ion of most of the o-methoxythioamides results from an ortho effect of the methoxy group. Comparison of the MIKE spectra of the [M? SH]+ of 1-(2-methoxyphenylthioxomethyl)piperidine and 1-(2-methoxyphenylthioxomethyl)pyrrolidine with the MIKE spectra of [M? SH]+ of the corresponding unsubstituted compounds, reported earlier, indicated two parallel pathways for the formation of [M? SH]+ in the o-methoxy compounds. In the first pathway, as has been noticed in thioamides in general, the loss of ?H involves the migration of either the α-hydrogen in the amine moiety or the hydrogen attached to nitrogen. In the second pathway, the migration of a hydrogen from the o-methoxy group to the sulphur atom followed by ejection of SH from the molecular ion leads to a stable cyclized ion. Interesting secondary fragmentations as a consequence of this ortho effect have also been noticed.  相似文献   

6.
3-Substituted-2,2,5,5-tetramethylpyrrolidine nitroxides are stable free radicals used extensively in the synthesis of ‘spin labels’. The high resolution mass spectra of these nitroxides substituted with ? CH2OH, ? OH, ? NH2 and ?o have been recorded on magnetic tape and the elemental compositions of the ions calculated by computer. Ionisation by electron bombardment(70eV), gives rise to an even-electron molecular ion species. [M+1]+. ions are observed in the spectra of all compounds examined, except in the case of the 3-carbonyl compound, 2,2,5,5-tetramethylpyrrolid-3-one-1-oxyl. Loss of a methyl radical from these ions leads to the appearance of ions at [M -14]+. The predominant fragmentation for those compounds in which the substituents can supply electrons to the ring, is the sequential elimination of isobutene, nitric oxide and a hydrogen radical. In the case of the 3-hydroxy compound, these ions account for 23 percent of the total ion current. 2,2,5,5-Tetramethylpyrrolid-3-one-1-oxyl, which bears an electron-withdrawing substituent gives rise to a fragmentation pattern somewhat different from those of the other compounds. The main features are the absence of a peak at [M + 1]+˙ and the general phenomenon of fewer peaks but with higher intensities.  相似文献   

7.
The major mass spectrometric fragments of ms-tetraphenylporphin and ms-tetra(p-chloro)phenylporphin are [M ? H]+˙ and [M ? Cl]+˙, respectively. Metal derivatives of these compounds give a modified characteristic fragmentation pattern with peak groups ending in the ions [M ? 4H]+˙, [M ? ? ? 5H]+˙ and [M ? 2? ? 2H]+˙ for the metallo ms-tetraphenylporphins, and [M ? ?Cl ? 2Cl ? 3H]+˙ and [M ? 2?Cl ? Cl ? H]+˙ for Mgms-tetra(p-chloro)phenylporphin. Deuterated metal derivatives indicate random hydrogen loss from both phenyl and pyrrole carbons. However, metal substituents do not significantly modify the fragmentation pattern in the case of ms-tetra(p-methoxy)phenylporphin. These patterns can be explained in terms of aromatic stabilization of the fragmentation products, coupled with charge localization on the π system in the free base, on the metal atom in the metallo derivatives and on the methoxy function in the p-methoxyphenyl derivative.  相似文献   

8.
The fragmentation of the homologous fatty acid tetraesters of pentaerythritol (C-2 to C-14) upon electron impact was investigated. The main fragment ions are [M? RCOO]+ and [M? RCOOH]+, for which cyclic acetal structures are postulated. Subsequent fragmentation was elucidated by ‘direct analysis of daughter ion’ (DADI) measurements and high resolution measurements. Esters of branched fatty acids can be distinguished from esters of n-fatty acids by characteristic ions. Isomeric esters of n-fatty acids cannot be separated by gas chromatography but identification is also possible by mass spectrometry.  相似文献   

9.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

10.
The effect of the dissociation energy of the C? X bond (X = H, F, Cl, Br, I) on the formation of benzimidazolium ions (b) by elimination of X from the molecular ions of ortho-substituted N,N-dimethyl-N′-phenylformamidines (I to V) has been investigated. No simple relation is observed between the intensities of ions b and the dissociation energy. Furthermore, the appearance potentials of ions b are not greatly affected by the dissociation energy, although differences of about 2.5 eV are expected for a simple cleavage reaction. The behaviour of the molecular ions of I to V is in accord with a two step addition-dissociation mechanism [M]+· → ab, and the highest activation energy is required in the first addition step. Similar mechanisms are known for aromatic substitution reactions in the condensed phase, but have not been observed for mass spectrometric fragmentations. The detection of additional kinetic energy T in the reaction products by an analysis of the metastable transitions [M]+· → b corroborates the proposed mechanism.  相似文献   

11.
The ion intensity ratios from competing α-fissions of 30 tertiary aliphatic alcohols and 24 ethers of tertiary alcohols have been measured at 13 eV. The intensity ratios of ions [M ? alkyl1]+ and [M ? alkyl2]+ agree well with the reciprocal mass ratios of the respective ions in the case when the alkyl groups are not methyl (ion mass effect). The intensity ratios of [M ? alkyl]+ and [M ? methyl]+ are always too high, but intensity ratios of [M ? alkyl1]+ and [M ? alkyl2]+ may be derived indirectly from them, which also agree well with those values expected from the ion mass effect. By the indirect method it is shown, that for the 2,2-dialkyl-1,3-dioxolanes (ethylene ketals) the ion mass effect plays a dominant role too.  相似文献   

12.
At an electron energy of 70 eV (nominal) both the [M]+·-ion and the [M? H]+-ion of the title compound expel hydrogen cyanide. 13C labelling in the cyano group shows that these ions lose—within experimental error—only H13CN when decomposing in the ion source, i.e. when possessing a relatively high internal energy. In the first and second field free region, however, as well as in the ion source at low ionizing energies (9 eV, nominal), H12CN is also eliminated. This phenomenon may be explained by ring contraction of the molecular ion to a six membered ring, possibly initiated by the formation of a norcaradiene structure, which may then rearrange further to a species of higher symmetry. This ring contraction is supported by the occurrence of peaks of low intensity at m/e 78 and m/e 77, due to fragments which are generated in one step from the molecular ion.  相似文献   

13.
A ditopic ion‐pair receptor ( 1 ), which has tunable cation‐ and anion‐binding sites, has been synthesized and characterized. Spectroscopic analyses provide support for the conclusion that receptor 1 binds fluoride and chloride anions strongly and forms stable 1:1 complexes ([ 1? F]? and [ 1? Cl]?) with appropriately chosen salts of these anions in acetonitrile. When the anion complexes of 1 were treated with alkali metal ions (Li+, Na+, K+, Cs+, as their perchlorate salts), ion‐dependent interactions were observed that were found to depend on both the choice of added cation and the initially complexed anion. In the case of [ 1? F]?, no appreciable interaction with the K+ ion was seen. On the other hand, when this complex was treated with Li+ or Na+ ions, decomplexation of the bound fluoride anion was observed. In contrast to what was seen with Li+, Na+, K+, treating [ 1?F ]? with Cs+ ions gave rise to a stable, host‐separated ion‐pair complex, [F ?1? Cs], which contains the Cs+ ion bound in the cup‐like portion of the calix[4]pyrrole. Different complexation behavior was seen in the case of the chloride complex, [ 1? Cl]?. Here, no appreciable interaction was observed with Na+ or K+. In contrast, treating with Li+ produces a tight ion‐pair complex, [ 1? Li ? Cl], in which the cation is bound to the crown moiety. In analogy to what was seen for [ 1? F]?, treatment of [ 1? Cl]? with Cs+ ions gives rise to a host‐separated ion‐pair complex, [Cl ?1? Cs], in which the cation is bound to the cup of the calix[4]pyrrole. As inferred from liposomal model membrane transport studies, system 1 can act as an effective carrier for several chloride anion salts of Group 1 cations, operating through both symport (chloride+cation co‐transport) and antiport (nitrate‐for‐chloride exchange) mechanisms. This transport behavior stands in contrast to what is seen for simple octamethylcalix[4]pyrrole, which acts as an effective carrier for cesium chloride but does not operates through a nitrate‐for‐chloride anion exchange mechanism.  相似文献   

14.
The literature on the mass spectrometry of 2H and 13C labelled higher alkanes is reviewed and the decomposition behaviour of both the molecular and the fragment ions of n-dodecane, n-dodecane-1, 12-[13C2] and n-dodecane-1,1,1,12,12,12-[2H6] studied with special emphasis on metastable decompositions. It is shown that the elimination of alkane molecules and alkyl radicals from the n-dodecane molecular ion occurs primarily by simple splitting of the C? C bond. In addition, both small alkane molecule and alkyl radicals are eliminated with low probability from centreal parts of the molecular ion. The alkane elimination is less specific than the alkyl elimination. The methyl elimination shows an exceptionally high non-specificity, but is of negligible abundance in the 70 e V electron impact spectrum. The metastable ion spectra suggest, but do not prove unambiguously, that those small alkyl ions (with up to four carbon atoms) originating directly from the molecular ion, may be formed both by direct cleavage of the terminal groups and from central parts of the molecular ion. However, the majority of the small alkyl fragment ions in the 70 eV spectrum are formed by secondary decomposition explaining their apparent non-specific formation. The strikingly different fragmentation behaviour of even electron, [CnH2n+1]+, and odd electron fragment ions, results from differences in the product stabilities. Using collisional activation and metastable ion spectra it is shown that the odd electron fragments have the structure of the linear alkene (most probably the 1-alkene) molecular ion. In contrast to the molecular ions, alkyl fragment ions decompose with complicated skeletal rearrangements, which lead to substantial, but not complete, carbon randomization. The terminal hydrogen atoms, however, show little scrambling.  相似文献   

15.
The electron impact mass spectra of the new synthesized dioximes of o-diacyl benzenes (2) are reported. In addition to the molecular ion, characteristic peaks appear at values corresponding to the [M ? OH] +, [M ? NOH]+ and [M ? NHOH]+ ions. No initial dehydration of the molecular ion has been observed.  相似文献   

16.
Methane chemical ionization (CI) mass spectra for a series of ten polycyclic chlorinated insecticides and metabolites have been examined. In all cases except heptachlor epoxide the base peak corresponded to elimination of Cl, or OH from the molecule ion. In the spectrum of heptachlor epoxide the [M + H]+ and [M ? Cl]+ clusters were of approximately equal intensity. The CI spectra were remarkably simple, invariably less complex than the corresponding electron-impact (EI) mass spectra and the intensity of the ions with high information content, e.g. [M ? CI]+ was uniformly high. All of these features are important to the analytical potential of these studies. Retro Diels-Alder (RDA) fragments were observed for the chlordanes, aldrin, isodrin, nonachlor and heptachlor epoxide. The reported preliminary data suggest that the relative intensity of RDA ions in CI mass spectra may be useful in establishing molecular configurations.  相似文献   

17.
A systematic study on the electron impact mass spectra of all nine chlorinated catechols in presented. Metastable ion analysis was used to elucidate the fragmentation pathways. The influence of the position of the chloro substituents can be used to distinguish the structural isomers. In this respect the most characteristic fragment ions are [M? CHl]+˙, [M? HCOOH]+˙, [M? COCl]+, [M? HCl? CO]+˙, [M? CHOCl]+˙ and [M? HCl? HCl]+˙.  相似文献   

18.
A new ditopic ion‐pair receptor 1 was designed, synthesized, and characterized. Detailed binding studies served to confirm that this receptor binds fluoride and chloride ions (studied as their tetraalkylammonium salts) and forms stable 1:1 complexes in CDCl3. Treatment of the halide‐ion complexes of 1 with Group I and II metal ions (Li+, Na+, K+, Cs+, Mg2+, and Ca2+; studied as their perchlorate salts in CD3CN) revealed unique interactions that were found to depend on both the choice of the added cation and the precomplexed anion. In the case of the fluoride complex [ 1? F]? (preformed as the tetrabutylammonium (TBA+) complex), little evidence of interaction with the K+ ion was seen. In contrast, when this same complex (i.e., [ 1? F]? as the TBA+ salt) was treated with the Li+ or Na+ ions, complete decomplexation of the receptor‐bound fluoride ion was observed. In sharp contrast to what was seen with Li+, Na+, and K+, treating complex [ 1? F]? with the Cs+ ion gave rise to a stable, receptor‐bound ion‐pair complex [Cs ?1? F] that contains the Cs+ ion complexed within the cup‐like cavity of the calix[4]pyrrole, which in turn was stabilized in its cone conformation. Different complexation behavior was observed in the case of the chloride complex [ 1? Cl]?. In this case, no appreciable interaction was observed with Na+ or K+. In addition, treating [ 1? Cl]? with Li+ produces a tightly hydrated dimeric ion‐pair complex [ 1? LiCl(H2O)]2 in which two Li+ ions are bound to the crown moiety of the two receptors. In analogy to what was seen in the case of [ 1? F]?, exposure of [ 1? Cl]? to the Cs+ ion gives rise to an ion‐pair complex [Cs ?1? Cl] in which the cation is bound within the cup of the calix[4]pyrrole. Different complexation modes were also observed when the binding of the fluoride ion was studied by using the tetramethylammonium and tetraethylammonium salts.  相似文献   

19.
Water elimination from ionized n-butanol reflects near randomization of all hydrogens in ions decomposing after ~10?5s. This probably takes place in ion-neutral complexes by formation of a cyclobutane ion–H2O complex and/or rearrangement within [C4H8]+˙ in open-chain [C4H8+˙? H2O] complexes, in either case accompanied by hydrogen exchange between water and open-chain hydrocarbon moieties. Extensive hydrogen rearrangements in which restraints on conventional transition-state ring size have little apparent influence may generally be ion–neutral complex-mediated processes.  相似文献   

20.
The mass spectra of all stereoisomers of decalin-2,3-diol, the corresponding dimethyl ethers and of some deuterated derivatives are discussed. The mass spectra of isomeric decalin-2,3-diols differ only slightly in ion intensities. The mass spectra of the stereoisomeric 2,3-dimethoxy-decalins are nearly identical within the series of transand cisderivatives. A mass spectrometric identification of the stereoisomers of these compounds is therefore diffucult. Stereoselective eliminations from the molecular ion are not observed. The mass spectra -of stereoisomeric decalin-1,4-diols show characteristic differences in the intensities of the[M ? H2O]+˙-ions, which can be related to the geometry of the molecules in a similiar mode as was the case with cyclohexane-1,4-diols, The sterechemical control of the elimination of H2O from the molecular ions has been confirmed by deuterium labelling. The mass spectra of stereoismeric 1,4-dimethoxy-decalins also differ characteristically in the intensities of the [M ? CH3OH]+˙ ions. Furthermore peak due to the [M ? CH2O]+˙ ions are only observed in the mass spectra of those stereoisomers, which have at least one conformation with a short distance between the two methoxy. The stereospecifity of the CH3OH- and CH2O-eliminationjs has also been determined by deuterium labelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号