首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cr/SiO2 catalysts with 1 or 3 wt.% Cr loadings and different chromium precursors were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A method to determine chromium species in the sample was developed through the decomposition of the Cr 2p XPS spectrum in Cr6+ and Cr3+ standard spectra. The results of the binding energy from the Cr 2p region and of the distribution of chromium species allowed to evaluate the dynamic photo-reduction of the surface chromium species during XPS analysis. Photo-reduction of surface Cr6+ to Cr3+ species was verified for all samples supported in silica, depending on the precursor and chromium content. Bulk CrO3 and Cr2O3 standards did not reveal variation in the binding energy of Cr 2p3/2, but a physical mixture of CrO3 with SiO2 presented photo-reduction. The behavior of this mixture resembled to the catalysts and suggests the participation of the surface hydroxyls of silica in the photo-reduction process. XPS intensity measurements for assessing dispersion of chromium oxide were used to compare the calcined and reduced catalysts to different chromium precursors. Polyethylene chains were detected by in situ XPS, while oligomerization products were not observed.  相似文献   

2.
Nano-structured TiO2/carbon clusters/Cr2O3 composite material has been successfully obtained by the microwave treatment of a TiO(acac)/Cr(acac)3/epoxy resin complex. The compositions of the composite materials were determined using ICP, elemental analysis and surface characterization by SEM-EDX, TEM and XRD. ESR spectral examinations suggest the possibility of an electron transfer in the process of TiO2 → carbon clusters → Cr2O3 with an oxidation site at TiO2 particles and a reduction site at Cr2O3 particles. The preliminary experimental results show that the calcined materials could decompose methylene blue under visible-light irradiation.  相似文献   

3.
The surface properties of plasma sprayed Al2O3- and TiO2-based coating materials were characterized in order to investigate the influence of surface strain and phase inhomogenity. The materials were water exposed up to 8 months. The bulk crystallographic structure, dissolution behaviour, effective charge (zeta potential, isoelectric point), surface compositions and oxidation states were determined. In addition, the properties of the aging solutions, such as conductivity, supernatant pH (point of zero charge), and redox potential, were monitored during aging.It was shown that the materials were stable under aging conditions, but that considerable surface rearrangements, such as dissolution-reprecipitation and surface site redistributions may occur. However, overall only minor changes in surface properties results from this restructuring process.  相似文献   

4.
Surface sensitive electron spectroscopy was applied to study the fundamental processes of aluminium corrosion. We used metastable induced electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy (UPS) for the investigation of the densities of states of surface and bulk, respectively. Furthermore we applied X-ray photoelectron spectroscopy (XPS) to investigate the chemical composition of the top surface layers. All measurements were performed under ultra high vacuum conditions.Al films with thicknesses of 7 nm were investigated. Both the interaction of oxygen and water with these films leads to the formation of an aluminium-oxygen layer, which is partly composed of stoichiometric Al2O3. Weak heat treatment at 770 K transforms the surface layer into Al2O3 with a thickness of about 2 nm. Further gas offer does not lead to an increase of this thickness, neither for oxygen nor for water. Additional to the oxygen offer, water exposure leads to the formation of OH species in the top aluminium-oxygen layer to a small amount. Weak heat treatment to 770 K removes this species completely. Water exposure leads to a much faster oxide formation than oxygen exposure. We try to give a model for the fundamental corrosion processes on a molecular scale.  相似文献   

5.
Modified substrates with nanometer scale smooth surface were obtained via coating a layer of CaO-Al2O3-SiO2 (CaAlSi) high temperature glaze with proper additives on the rough-95% Al2O3 ceramics substrates. (Ba0.6Sr0.4)TiO3 (BST) thin films were deposited on modified Al2O3 substrates by radio-frequency magnetron sputtering. The microstructure, dielectric, and insulating properties of BST thin films grown on glazed-Al2O3 substrates were investigated by X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric properties measurement. These results showed that microstructure and dielectric properties of BST thin films grown on glazed-Al2O3 substrates were almost consistent with that of BST thin films grown on LaAlO3 (1 0 0) single-crystal substrates. Thus, the expensive single-crystal substrates may be substituted by extremely cheap glazed-Al2O3 substrates.  相似文献   

6.
Porous surface-fluorinated TiO2 (F-TiO2) films were prepared through PEG modified sol-gel method and surface fluorination. The as-prepared films were characterized with XRD, FTIR, AFM, XPS and UV-vis DRS. The effects of surface fluorination on the photocatalytic activity and hydrophilicity of porous TiO2 film were studied by photocatalytic degradation of rhodamine B (RhB) as well as water contact angle (CA) on porous TiO2 film. The results showed that the surface fluorination increased the adsorption of RhB on the porous TiO2 film and enhanced the photocatalytic degradation of RhB. The concentration and pH of NaF solutions affected much the photocatalytic activity of porous TiO2 film. Porous F-TiO2 film prepared in 40 mM NaF solution at pH 4.0 showed the highest photocatalytic activity. Because of its porous structure, the porous F-TiO2 film had original water CA of 22.7°, which is much smaller than that of normal F-TiO2 film. Under UV light irradiation, the water CA of porous F-TiO2 film decreased to 5.1° in 90 min.  相似文献   

7.
The aim of this study is to compare water vapour sorption isotherms on various mesoporous materials in their pristine state and after silanisation. Commonly the pristine state is regarded as hydrophilic and the silanised one as hydrophobic. Water vapour sorption experiments are discussed for a highly ordered nanoporous aluminium oxide with straight cylindrical channels of ca. 25 nm diameter and for various controlled porous glasses (CPGs) with disordered pores in the range of 13 nm diameter. The water sorption isotherms exhibit in both cases a hysteresis over the entire humidity range. At higher humidities the pristine materials show capillary condensation whereas for the silanised samples this phase transition does not occur or even a loss of water is recorded as for the silanised Al2O3. Surprisingly, for the silanised Al2O higher water uptake is observed in the low humidity region. Application of the excess surface work (ESW) method delivers a reduced structural component in the long range interaction of the water molecules with a hydrophobic surface. Inverse gas chromatography studies of the silanised CPGs result in an increased short range dispersive part of the surface energy with the increasing degree of silanisation.  相似文献   

8.
The influence of additives such as TiO2, Al2O3 and their mechanical mixture as well as aluminium oxide, the surface of which contains phosphorous and titanium-oxide nanostructures, on the combustibility of foam plast (trade mark PEN-I), produced on the basis of epoxide novolak block-copolymers, was studied. It was stated that the incorporation both phosphorous-containing and titanium-containing oxides in the composition results in significant (in two to five times) decreasing of the samples’ combustibility. The probable mechanism of inhibition of burning process for those combustion retarders was discussed.  相似文献   

9.
Cr, CrN, TiCr coatings have been investigated as potential anti-multipactor coatings. The coatings were synthesized by cathodic-arc reactive evaporation in Ar-N2 atmosphere where the ion energy is controlled by substrate biasing. Chemical state analysis and surface composition were studied by X-ray photoemission spectroscopy (XPS), whereas bulk composition and depth profile were studied by glow discharge optical emission spectroscopy (GDOES). The surface morphology was studied by optical profilometry (OP) and scanning electron microscopy (SEM). The compositions of the coatings were CrN and Ti40Cr60 and they were homogeneous in depth. Surface oxidation was higher in Ti40Cr60 than in CrN. Coatings deposited at high negative bias show lower deposition rate and had lower surface roughness than those obtained at low bias. Secondary electron emission yield (SEY) was higher for CrN than for Ti40Cr60, both before and after low-energy Ar+ ion bombardment. The SEY of Ti40Cr60 (1.17 maximum) was clearly smaller than the others. The maximum yield, σm, and the first crossover electron energy, E1, are the most important parameters, and (E1/σm)1/2 is a good figure of merit. This quantity was approximately 3 eV1/2 for Cr and CrN and 4 eV1/2 for Ti40Cr. After Ar+ ion bombardment, the average value improved significantly to 8.9 eV1/2 for Cr and CrN and 10.2 eV1/2 for Ti40Cr60. The radio-frequency multipactor performance of these materials was simulated using the experimentally determined SEY parameters.  相似文献   

10.
Single-crystalline magnetoelectric (ME) antiferromagnetic Cr2O3 exchange coupled to a ferromagnetic multilayer (Pt/Co/Pt)n, n?1, represents a multiphase multiferroic material with sophisticated multifunctional properties. They comprise the possibility of switching the exchange bias (EB) of the ferromagnetic hysteresis loop via the linear ME effect of Cr2O3, and to design MERAM and logic cells operating at room temperature. Quadratic and cubic ME effects - promoted by soft-mode quantum fluctuations - are observed at lowest order in ceramic Sr0.98Mn0.02TiO3 at low temperatures. Dipolar and spin glass orders occur simultaneously on the Mn2+ subsystem and form a multiglass by analogy with conventional multiferroics.  相似文献   

11.
Cr-doped mullites were prepared from single-phase precursors containing up to 9.60 wt% Cr2O3 using a sol-gel technique followed by thermal treatment. Particle induced X-ray emission spectroscopy and X-ray powder diffraction were used to characterize the samples. Mullites were orthorhombic, space group Pbam. Cr doping caused the increase of unit-cell parameters. Strongest expansion was noticed along c-axis followed by a and bc/c=0.089, Δa/a=0.061, Δb/b=0.045% per mole Cr2O3). A second phase, namely θ-(Al,Cr)2O3, was revealed by XRD in the sample containing 9.60 wt% Cr2O3. The structure of mullites was refined by the Rietveld method, location of Cr3+ was performed by the EPR spectroscopy. At low chromium doping level (Cr2O3 content less than ∼5 wt%) Cr3+ ions were substituted for Al3+ in the AlO6 octahedra of the mullite structure (M1 site). For higher doping level, Cr3+ ions were additionally substituted for Al3+ in the AlO6 octahedra of the second phase [θ-(Al,Cr)2O3 at 1400 °C, or α-(Al,Cr)2O3 at 1600 °C] which segregated in the system. Substitution of Cr3+ for Al3+ on M1 site in the mullite structure resulted in increase of average distances in (M1)O6 octahedron and decrease of average distances in T*O4 tetrahedron, while average distances in TO4 tetrahedron stayed almost constant.  相似文献   

12.
M. Teo 《Applied Surface Science》2005,252(5):1293-1304
A remote microwave-generated H2 plasma and heating to 250 °C were separately used to modify high-purity oxidized aluminum surfaces and to assess whether these treatments can help enhance adhesion with bis-1,2-(triethoxysilyl)ethane (BTSE) coatings. Different initial oxide surfaces were considered, corresponding to the native oxide and to surfaces formed by the Forest Products Laboratory (FPL) treatment applied for either 15 or 60 min. BTSE is applied from solution at pH 4, and competing processes of etching, protonation (to form OH groups) and coupling (to form AlOSi interfacial bonds) occur at the solid-liquid interface. Scanning electron microscopy (SEM) was used to determine how the topographies of the modified Al surfaces changed with the different pre-treatments and with exposure to a buffer solution of pH 4. Secondary-ion mass spectrometry (SIMS) was used to determine the direct amount of AlOSi interfacial bonds by measuring the ratio of peak intensities 71-70 amu, while X-ray photoelectron spectroscopy (XPS) was used to determine the overall strength of the silane coating adhesion by measuring the Si 2p signals before and after application of an ultrasonic rinse to the coated sample. Measured Al 2p and O 1s spectra helped assess how the different pre-treatments modified the various Al oxidized surfaces prior to BTSE coating. Pre-treated samples that showed increased AlOSi bonding after BTSE coating corresponded to surfaces, which did not show evidence of significant etching after exposure to a pH 4 environment. This suggests that such surfaces are more receptive to the coupling reaction during exposure to the BTSE coating solution. These surfaces include all H2 plasma-treated samples, the heated native oxide and the sample that only received the 15 min FPL treatment. In contrast, other surfaces that show evidence of etching in pH 4 environments are samples that received lower amounts of AlOSi interfacial bonding. Overall, heating improved the BTSE adhesive bonding for the native Al oxide, while H2 plasma treatment improved the BTSE bonding for surfaces that had initially been FPL-treated for 15 and 60 min.  相似文献   

13.
X-ray photoelectron spectroscopy (XPS) was applied to investigate the surface reactivity of polycrystalline Al films in contact with a gas mixture of carbon dioxide and oxygen at room temperature. Based on the characterization of interactions between these substrates and the individual gases at selected exposures, various surface functionalities were identified. Simultaneously dosing both carbon dioxide and oxygen is shown to create surface-terminating carbonate species, which contribute to inhibiting the formation of an Al2O3 layer. Finally, a reaction scheme is suggested to account for the observed dependence of surface group formation on the dosing conditions.  相似文献   

14.
A new method for the synthesis of nanocrystalline anatase Cr-doped TiO2 colloids from nanotubes utilizing the hydrothermal ion-intercalation (HII) method has been devised using hydrothermal treatment in an acidic environment. To investigate the photoelectrochemical reaction that occurs when water is split into H2 and O2 under visible light, a Cr-doped TiO2 thin film served as a model photoelectrode. The photoelectrochemical activity of Cr-doped TiO2 was higher than that of the undoped sample. The photoelectrochemical activity of photoelectrodes increased drastically with increased chromium doping. A red shift in the band gap was induced by Cr doping of TiO2. It was revealed that the Cr-doped TiO2 photoelectrode was able to utilize a wide range of light in the visible region of the spectrum. At high Cr concentrations, the lower photoelectrochemical activity is attributed to the effect of Cr3+ ion recombination and excess Cr3+ ions forming secondary phase Cr2O3.  相似文献   

15.
The objective of this study was to identify a material suitable to absorb radiation at the wavelength of neodymium-doped Yttrium Aluminum Garnet (Y3Al5O12:YAG), 1064 nm. M-(M= Sm3+, Co2+, Co3+, Cr3+, and Cr4+) doped highly transparent YAG ceramics were fabricated, and their absorption spectra were measured. Unlike Co2+ and Cr3+-doped ceramic samples, Co3+ and Cr4+ and Sm3+-doped:YAG ceramics were found to have significant absorption at 1064 nm. However, the Sm3+-doped YAG clearly emerged as the best candidate because it is also transparent at 808 nm, the pumping wavelength laser diode (LD), and also at most absorption bands used for flash-lamp pumping.  相似文献   

16.
Alternately Er doped Si-rich Al2O3 (Er:SRA) multilayer film, consisting of alternate Er-Si-codoped Al2O3 (Er:Si:Al2O3) and Si-doped Al2O3 (Si:Al2O3) sublayers, has been synthesized by co-sputtering from separated Er, Si, and Al2O3 targets. The dependence of Er3+ related photoluminescence (PL) properties on annealing temperatures over 700-1100 °C was studied. The maximum intensity of Er3+ PL, about 10 times higher than that of the monolayer film, was obtained from the multilayer film annealed at 950 °C. The enhancement of Er3+ PL intensity is attributed to the energy transfer from the silicon nanocrystals in the Si:Al2O3 sublayers to the neighboring Er3+ ions in the Er:Si:Al2O3 sublayers. The PL intensity exhibits a nonmonotonic temperature dependence: with increasing temperature, the integrated intensity almost remains constant from 14 to 50 K, then reaches maximum at 225 K, and slightly increases again at higher temperatures. Meanwhile, the PL integrated intensity at room temperature is about 30% higher than that at 14 K.  相似文献   

17.
Photoluminescence of undoped and Cr3+-doped β-Ga2O3 was investigated. The transparent, undoped β-Ga2O3 film was successfully prepared by thermal conversion from GaOOH. The film exhibited predominant green luminescence in response to ultraviolet light excitation at 250 nm. This luminescence behavior, which was proposed to result from the oxygen defect centers, was used in examining excitation and emission mechanisms for Cr3+ ions doped in β-Ga2O3. It was found that red luminescence of Cr3+ surpasses green luminescence of the host lattice, as evidenced by the dependence of the spectral structure on the Cr3+ concentration. The excitation of Cr3+ was then suggested to be caused by the energy transfer from Ga3+O6 octahedra present in the monoclinic β-Ga2O3 lattice.  相似文献   

18.
We report the visible light-induced hydrogen generation over a series of Keggin-structure heteropoly blue (HPB) anions (PW12O403−, phosphotungstic blue (PTB), GeW12O404− (GTB), SiW12O404− (STB), BW12O405− (BTB)) sensitized Pt/TiO2 photo-catalysts. The sensitization of TiO2 by HPB was certified using photo-electrochemical measurements and UV-vis absorption spectra. PTB showed the most pronounced sensitization effect for TiO2 in those HPB anions and Pt/TiO2-PTB showed the highest hydrogen generation activity. The sensitization of TiO2 was significantly dependent on the reduction potential of HPA, which was determined by the kind of central atom in HPA.  相似文献   

19.
Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al2O3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.  相似文献   

20.
CaTiO3:Pr3+ films were deposited on different substrates such as Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica using pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by XRD and SEM measurements. The films grown on the different substrates have different crystallinity and morphology. The FWHM of (2 0 0) peak are 0.18, 0.25, 0.28, and 0.30 for Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica, respectively. The grain sizes of phosphors grown on different substrates were estimated by using Scherrer's formula and the maximum crystallite size observed for the thin film grown on Al2O3 (0 0 0 1). The room temperature PL spectra exhibit only the red emission peak at 613 nm radiated from the transition of (1D2 → 3H4) and the maximum PL intensity for the films grown on the Al2O3 (0 0 0 1) is 1.1, 1.4, and 3.7 times higher than that of the CaTiO3:Pr3+ films grown on MgO (1 0 0), Si (1 0 0), and fused Sillica substrates, respectively. The crystallinity, surface morphology and luminescence spectra of thin-film phosphors were highly dependent on substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号