首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The aim of the present work is to compare the structural, the composition and chemical state of the surface and magnetic properties of different nanosized CuFe2O4 powders exhibiting collective Jahn-Teller effect. The samples under examination consist of edged nanosized particles (needle like) with average length 1300 ± 20 nm and diameter 300 ± 20 nm obtained after high temperature synthesis, and superparamagnetic (at room temperature) spherical particles (d = 6 ± 2 nm), obtained by soft chemistry techniques. The surface composition of the particles was investigated by X-ray photoelectron spectroscopy (XPS). Mössbauer spectroscopy (MöS), including at high magnetic field up to 5 T and 4.2 K, was used for characterization of cation distribution in the samples. The data yielded by the XPS and MöS analyses for spherical nanosized particles led us to the assumption for the existence of a Jahn-Teller effect gradient—from the B-sublattice on the surface to a compensation of the tetragonal distortion in the two sublattices in the core. The analysis of the contribution of the anisotropy energy in edged and spherical nanoparticles shows that it must be considered as an effective value reflecting the influence of the individual factors depending on the particle shape and surface.  相似文献   

2.
A consistent model is presented for the variation of saturation magnetization with particle size in maghemite nanoparticles, based on the existence of a magnetically disordered layer with a constant thickness of 1 nm. For particles smaller than 3 nm, layer thickness increases rapidly, and MS is already zero for 2.5 nm particle size. Magnetization measurements have been performed on maghemite–polymer nanocomposites with low size dispersion and a regular distribution of particles in the matrix. A representative number of samples have been studied with a diameter size in the range from 1.5 to 15 nm and ±10% of size dispersion.  相似文献   

3.
Yan Wang 《Applied Surface Science》2010,256(20):6107-2855
Scaffolds comprising hydroxyapatite (HAP) or poly(?-caprolactone)-grafted hydroxyapatite (g-HAP) and poly(?-caprolactone) (PCL) were prepared using the thermally induced phase separation/salt leaching technique. The g-HAP nanoparticles were evaluated by Fourier Transformation Infrared Spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Power X-ray Diffraction (XRD) patterns confirmed the successful grafting on the surface of HAP. The effects on mechanical strength, porosity and thermal property of scaffolds by the introduction of nanoparticles were extensively investigated. The compressive modulus of the scaffold was greatly improved by the addition of g-HAP nanoparticles. Especially the compressive modulus of the g-HAP/PCL scaffold containing 20 wt% of g-HAP was 59.4% higher than that of the corresponding HAP/PCL scaffold.  相似文献   

4.
Two silver samples, coarse grained (c-Ag, grain size 300±30 nm) and nanocrystalline (n-Ag, grain size 55±6 nm), are compressed in a diamond anvil cell in separate experiments. The pressure is increased in steps of ∼3 GPa and the diffraction pattern recorded at each pressure. The grain size and compressive strength are determined from the analysis of the diffraction line-widths. The grain size of c-Ag decreases rapidly from 300±30 nm at ambient pressure to 40±8 nm at 15 GPa, and then gradually to 20±3 nm at 40 GPa. After pressure release to ambient condition, the grain size is 25±4 nm. The strength at ambient pressure is 0.18±0.05 GPa and increases to 1.0±0.3 GPa at 40 GPa. The grain size of n-Ag decreases from 55±6 nm at ambient pressure to 17±4 nm at 15 GPa and to 14±3 nm at 55 GPa. After release of pressure to ambient condition, the grain size is 50±7 nm. The strength increases from 0.51±0.07 GPa at ambient pressure to 3.5±0.4 GPa at 55 GPa. The strength is found to vary as the inverse of the square-root of the grain size. The results of the present measurements agree well with the grain-size dependence of strength derived from the hardness versus grain size data at ambient pressure available in the literature.  相似文献   

5.
The paper describes the preparation and emission property of scandia and Re doped tungsten matrix impregnated cathode. By an easy and reproducible way, solid-liquid doping combined with two-step reduction, powders of tungsten particles covered with scandium oxide were obtained. Compared with scandia mixed tungsten powders prepared by mechanically mixing, scandia and rhenium doped tungsten powders had smaller particle size, for example, scandia (3 wt%) and Re (5 wt%) doped tungsten powders had the average size of about 50 nm in diameter. Based on this kind of powder, scandia and Re doped tungsten matrix with the sub-micrometer sized tungsten grains and a more uniform distribution of Sc2O3 were obtained in this paper. Scandia and Re doped tungsten matrix impregnated cathode had shown excellent emission property and good emission uniformity. The space charge limited current densities of more than 58A/cm2 at 900 °Cb could be obtained and the work function of this cathode was as low as 1.18 eV.  相似文献   

6.
In this work we present a magnetic study of La0.67Sr0.33MnO3 (LSMO) and La0.67Ca0.33MnO3 (LCMO) nanotubes with nominal external diameters (?) of 100, 200, 600 and 800 nm. The 800 nm diameter nanotubes have walls of around 50 nm thickness in all the cases. The walls are constituted by an assembly of nanoparticles with a non-Gaussian size distribution presenting a maximum at 24 ± 6 nm (LSMO) and 25 ± 8 nm (LCMO). We carried out isothermal remanent magnetization (IRM) and dc demagnetization (DCD) experiments. We determined that the crystallites are single magnetic domains with a magnetic dead layer on the surface which avoids exchange interactions among grains. We conclude that the dominating interactions are of dipolar type of the same magnitude for all the samples.  相似文献   

7.
Octacalcium phosphate (OCP) powder was produced by precipitating 250 mL Ca(CH3COO)2 0.04 M into 750 L of phosphate solution (5 mmol Na2HPO4 and 5 mmol NaH2PO4) at a constant temperature of 60 °C and pH 5, which resulted in a dry white powder. X-ray diffraction (XRD), transmission electron microscopy (TEM) analysis, and the electron diffraction pattern (SAED) all showed only OCP. Hydroxyapatite (HAP) was directly obtained through hydrolysis of the powder. The total transformation of OCP into HAP was registered over a period of 6 h. During the first 30 min of hydrolysis both phases coexisted. The two phases and the OCP-HAP interface were structurally analyzed through XRD and TEM. OCP parameters (calculated by the Rietveld method) are a=19.70, b=9.50, c=6.85 Å; α=90.03°, β=92.48°, γ=108.32° (triclinic P-1) with average crystal size of 13.5±0.2 nm, while HAP parameters were a=9.45, c=6.87 Å (hexagonal P63/m) with average crystal size of 16.9±0.2 nm.  相似文献   

8.
Using high-resolution atomic force microscope we observed in ambient atmosphere the slow morphological transitions of the incipient adlayer of gold grown on (0 0 0 1) sapphire substrate by pulsed laser deposition. The equivalent average uniform thickness of the gold deposition was about 0.55 Å, which is about one-fourth of its monolayer. A dynamic simulation revealed that about 10% of the gold was implanted into the substrate up to the depth of about 3.3 nm and the top monolayer of the sapphire surface was almost completely depleted of oxygen atoms due to the preferential sputtering by the plume particles. The gold adlayer transformed into a labile phase which enhanced the surface roughness and had a preferred orientation of a wavy structure during 24 h of the deposition. The auto-correlation function of this wavy structure in labile metastable phase revealed two-fold symmetry and provided a preferential size of about 4 nm (peak to peak) with a mean separation of 8 nm. At the end of about 6 days this phase was found to completely transform into an apparently de-wetted phase of beads with average in-plane diameter of ∼20 nm and height of ∼7 nm having large size distribution. Each bead was seen to have coating of a concentric corona layer, which might be that of the condensed moisture or other gaseous species from atmosphere because subjecting these samples to vacuum removed this layer. These observations shed light on the dynamics of the pulsed laser deposited metastable gold adlayer in the incipient stage of its growth on sapphire and their wetting or de-wetting mechanisms in ambient atmosphere.  相似文献   

9.
The structural evolution of nanoporous silica thin films was studied by Doppler broadening spectroscopy (DBS), 2-3 gamma ratio of positronium (3γ-PAS) and Fourier transform infrared spectroscopy (FT-IR). Four series of silica films with thickness in the 300-600 nm range were deposited by spin coating on Si substrate changing the content of sacrificial porogen in the sol precursors. The effect on the porosity of different amount of porogen and of the thermal treatments in the 400-900 °C temperature range have been highlighted. The evolution of the porosity is discussed considering the removal of porogen and of the silanol Si-OH groups by thermal treatments as pointed out by FT-IR. Pores with size from less than 1 nm up to sizes larger than 2.0 nm have been detected. In samples with maximum porogen load oPs escaping was observed indicating onset of connected porosity. At temperatures higher than 700 °C a decrease of the porosity due to a progressive pore collapsing was evidenced. A strong correlation was found between the shift of the Si-O-Si transversal optical (TO3) mode in the FT-IR spectra and the pore size in the porous silica films as revealed by DBS and 3γ-PAS.  相似文献   

10.
Micro arc oxidation was employed to grow hydroxyapatite-TiO2 nanostructured porous composite layers. The layers were synthesized on the titanium substrates in the electrolytes consisting of calcium acetate and sodium β-glycerophosphate salts under different applied voltages for various times. SEM and AFM investigations revealed a porous structure and rough surface where the pores size and the surface roughness were respectively determined as 70-650 nm and 9.8-12.7 nm depending on the voltage and time. Chemical composition and phase structure of the layers were evaluated using EDX, XPS, and XRD methods. The layers consisted of the hydroxyapatite, anatase, α-TCP, and calcium titanatephases with a varying fraction depending on the growth conditions. The hydroxyapatite crystalline size was also determined as ∼42 nm. The sample fabricated under the voltage of 350 V for 3 min exhibited the most appropriate Ca/P ratio (∼1.60) as well as the highest amount of the hydroxyapatite phase. This sample had a fine surface morphology and a high pores density.  相似文献   

11.
Silver nanoparticles (Ag NPs) were prepared by different chemical methods possessing different sizes 3 ± 2, 8 ± 2, and 20 ± 5 nm. The influence the size of Ag NPs was demonstrated by the absorption and fluorescence spectra, the maximum absorption of Ag NPs increases as the particle size increases. When Ag NPs irradiated with 308 nm excimer laser; the maximum absorption and the full width at half maximum decreased as the number of pulses increased up to 100,000 pulse; due to the size reduction. The fluorescence spectra of Ag NPs and irradiated Ag NPs with 308 nm excimer laser were recorded after excitation at 441.5 nm He-Cd laser, showing a red shift increasing as the particle size is increased.  相似文献   

12.
Well-aligned ZnO nanoflowers and nanosheets were synthesized on porous Si (PS) at different applied potentials by electrodeposition approach. The deposits were grown using the optimized program and were characterized by means of cyclic voltammetry (CV), amperometry I-t (I-t), open-circuit potentiometry. X-ray diffraction (XRD) analysis proved a strong preferential orientation (1 0 0) on PS. Scanning electronic microscopy (SEM) observation showed the deposits consist of nanoflowers with uniform grain size of about 100 nm in diameter and nanosheets, which may have potential applications in nanodevices and nanotechnologies. Thus, ZnO grown on PS can be used as photoelectric materials due to its larger photoelectric effect compared to Si wafer according to open-circuit potential (OCP) study. Optical band gap measurements were made on samples using UV-visible spectrophotometer thus giving a band gap of 3.35 eV.  相似文献   

13.
The gas-phase growth and optical characteristics of 1-dimensional ZnO nanostructure have been investigated. The ZnO nanowires (NWs) were grown vertically on Au coated silicon substrates by vapor-liquid-solid (VLS) growth mechanism using chemical vapor deposition (CVD). The ZnO NWs were grown in the crystal direction of [0 0 0 1]. The ZnO NWs exhibit the uniform size of less than 100 nm in diameter and up to 5 μm in length. Photoluminescence (PL) spectrum of ZnO NWs shows the strong band-edge emission at ∼380 nm (∼3.27 eV) without significant deep-level defect emission. The exciton lifetime of ZnO NWs was measured to be approximately 150 ± 10 ps.  相似文献   

14.
We studied the influence of porous Al2O3 substrates on Ce-stabilized ZrO2-doped hydroxyapatite thin films morphology pulsed laser deposited on their top. The porosities of substrates were monitored by changing sintering temperatures and measured with a high pressure Hg porosimeter.The depositions were conducted in 50 Pa water vapors by multipulse ablation of the targets with an UV KrF* (λ = 248 nm, τ ∼ 25 ns) excimer laser. The surface morphology of synthesized nanostructures was investigated by scanning electron microscopy and atomic force microcopy. Ca/P ratio within the range 1.67-1.70 was found for hydroxyapatite coatings by energy dispersive spectroscopy.The films were further seeded with mesenchymal stem cells for in vitro tests. The cells showed good attachment and spreading uniformly covering the entire surface of samples. The complexity of film morphology which is increasing with substrate porosity was shown to have a positive influence on cultivated cells density.  相似文献   

15.
NiTi alloy is used as biomaterial due to its unique properties, but the high content of Ni (about 50 at.%) in biomedical NiTi is concerned. Hydroxyapatite and hydroxyapatite/zirconia composite coatings were directly electrodeposited on NiTi alloy surface. The coated samples were characterized using X-ray diffraction, scanning electron microscopy, infrared spectroscopy, bonding strength test, polarization and EIS. Results showed that when ZrO2 was added into the electrolyte, morphology of HAP was changed from thin flake-flower-like crystals to needle-flower-like crystals, and coating was denser. Besides, HAP crystal grains in the coating were preferentially arranged in the [0 0 1] direction. Addition of ZrO2 could improve the bonding strength between the coating and the substrate. Corrosion resistance of NiTi in the simulated body fluid at 37 °C was significantly improved by almost 60 times by electrodeposition of the hydroxyapatite/zirconia composite coating.  相似文献   

16.
The effect of etching time of porous silicon on solar cell performance   总被引:1,自引:0,他引:1  
Porous silicon (PS) layers based on crystalline silicon (c-Si) n-type wafers with (1 0 0) orientation were prepared using electrochemical etching process at different etching times. The optimal etching time for fabricating the PS layers is 20 min. Nanopores were produced on the PS layer with an average diameter of 5.7 nm. These increased the porosity to 91%. The reduction in the average crystallite size was confirmed by an increase in the broadening of the FWHM as estimated from XRD measurements. The photoluminescence (PL) peaks intensities increased with increasing porosity and showed a greater blue shift in luminescence. Stronger Raman spectral intensity was observed, which shifted and broadened to a lower wave numbers of 514.5 cm−1 as a function of etching time. The lowest effective reflectance of the PS layers was obtained at 20 min etching time. The PS exhibited excellent light-trapping at wavelengths ranging from 400 to 1000 nm. The fabrication of the solar cells based on the PS anti-reflection coating (ARC) layers achieved its highest efficiency at 15.50% at 20 min etching time. The I-V characteristics were studied under 100 mW/cm2 illumination conditions.  相似文献   

17.
Size-controlled Mn0.67Zn0.33Fe2O4 nanoparticles in the wide range from 80 to 20 nm have been synthesized, for the first time, using the oxidation method. It has been demonstrated that the particle size can be tailor-made by varying the concentration of the oxidant. The magnetization of the 80 nm particles was 49 A m2 kg−1 compared to 34 A m2 kg−1 for the 20 nm particles. The Curie temperatures for all the samples are found to be within 630±5 K suggesting that there is no size-dependent cation distribution. The critical particle size for the superparamagnetic limit is found to be about 25 nm. The effective magnetic anisotropy constant is experimentally determined to be 7.78 kJ m−3 for the 25 nm particles, which is about an order of magnitude higher than that of the bulk ferrite.  相似文献   

18.
In this work, the soft magnetic composites (SMCs) of the nanocrystalline Fe-5 wt% Ni powders coated with phenolic resin were studied. The nanocrystalline powders with an average diameter of 10 nm were obtained by mechanical alloying up to 96 h milling in a high-energy planetary ball mill. The microstructure and magnetic properties of the milled powders were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy and a vibrating sample magnetometer. The results of X-ray diffraction showed that the bcc Fe(Ni) solid solution is formed after 24 h milling. Magnetic measurements indicated that the 96 h milled powders with a steady-state grain size of 10 nm have the highest saturation magnetization and the lowest coercivity. The SMCs based on nanocrystalline powders showed higher electrical resistivity and magnetic permeability up to 1 MHz, as compared with the pure iron-based composites. Besides, the nanocrystalline-based SMCs exhibited higher relaxation frequency and a significantly lower loss factor up to 1 MHz.  相似文献   

19.
Bimodally porous (2–4 and 20–100 nm) titania powders were prepared by hydrolysis of titanium tetraisopropoxide (TTIP), and the effect of hydrolysis temperature on the phase transformation and pore structure was investigated. The phase transformation was slightly retarded with increasing hydrolysis temperature, when the initial water concentration was small. The evolution of particle phase composition from amorphous to crystalline anatase and rutile was largely proportional to the calcination temperature and the initial water concentration. The pore size distribution was bimodal with fine intra-particle pores (2–4 nm in diameter) and larger inter-particle pores (20–100 nm). The intra-particle pores decreased in diameter at the hydrolysis temperature of 20°C. The specific surface area (SSA) of the dried powders ranged from 253 to 587 m2/g and the highest SSA was obtained at the hydrolysis temperature of 20°C.  相似文献   

20.
In this paper, the effect of etching time on light emitting porous silicon has been studied by using Raman scattering. Enhancement of Raman intensity by increasing the porosity is observed. Also there is a red shift, about 4 cm−1, from the Raman peak of crystalline silicon to that of porous silicon. The phonon confinement model suggests the existence of spherical nanocrystalline silicon with diameter around 7 nm. But SEM images show that the samples have a sheetlike structure that confines phonons in one dimension. This should not cause any shift in their Raman spectra. It is suggested that the observed Raman peak shift is due to the spherical nanocrystals on the surface of these sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号