首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Xueing Zhao 《Surface science》2007,601(12):2445-2452
This article reports photoemission and STM studies for the adsorption and dissociation of water on Ce-Au(1 1 1) alloys and CeOx/Au(1 1 1) surfaces. In general, the adsorption of water at 300 K on disordered Ce-Au(1 1 1) alloys led to O-H bond breaking and the formation of Ce(OH)x species. Heating to 500-600 K induced the decomposition or disproportionation of the adsorbed OH groups, with the evolution of H2 and H2O into gas phase and the formation of Ce2O3 islands on the gold substrate. The intrinsic Ce ↔ H2O interactions were explored by depositing Ce atoms on water multilayers supported on Au(1 1 1). After adsorbing Ce on ice layers at 100 K, the admetal was oxidized immediately to yield Ce3+. Heating to room temperature produced finger-like islands of Ce(OH)x on the gold substrate. The hydroxyl groups dissociated upon additional heating to 500-600 K, leaving Ce2O3 particles over the surface. On these systems, water was not able to fully oxidize Ce into CeO2 under UHV conditions. A complete Ce2O3 → CeO2 transformation was seen upon reaction with O2. The particles of CeO2 dispersed on Au(1 1 1) did not interact with water at 300 K or higher temperatures. In this respect, they exhibited the same reactivity as does a periodic CeO2(1 1 1) surface. On the other hand, the Ce2O3/Au(1 1 1) and CeO2−x/Au(1 1 1) surfaces readily dissociated H2O at 300-500 K. These systems showed an interesting reactivity for H2O decomposition. Water decomposed into OH groups on Ce2O3/Au(1 1 1) or CeO2−x/Au(1 1 1) without completely oxidizing Ce3+ into Ce4+. Annealing over 500 K removed the hydroxyl groups leaving behind CeO2−x/Au(1 1 1) surfaces. In other words, the activity of CeOx/Au(1 1 1) for water dissociation can be easily recovered. The behavior of gold-ceria catalysts during the water-gas shift reaction is discussed in light of these results.  相似文献   

2.
Isik Onal  Sezen Soyer 《Surface science》2006,600(12):2457-2469
Density functional theory (DFT) calculations performed at B3LYP/6-31G∗∗ level are employed to study water and ammonia adsorption and dissociation on (1 0 1) and (0 0 1) TiO2 anatase surfaces both represented by totally fixed and partially relaxed Ti2O9H10 cluster models. PM3 semiempirical calculations were also conducted both on Ti2O9H10 and Ti9O33H30 clusters in order to assess the effect of cluster size. Following dissociation, the adsorption of H2O and NH3 by H-bonding on previously H2O and NH3 dissociated systems, respectively are also considered. It is found that the adsorption energies and geometries of water and ammonia molecules on (1 0 1) and (0 0 1) anatase cluster models depend on surface relaxation. The vibration frequency values are also calculated for the optimized geometries. The adsorption energies and vibration frequency values computed are compared with the available theoretical and experimental literature.  相似文献   

3.
This study evaluated potential applications of green to yellow-emitting phosphors (Sr1−xSi2O2N2: Eu2+x) in blue pumped white light emitting diodes. Sr1-xSi2O2N2: Eu2+x was synthesized at different Eu2+ doping concentrations at 1450 °C for 5 h under a reducing nitrogen atmosphere containing 5% H2 using a conventional solid reaction method. The X-ray diffraction patterns of the prepared phosphor (Sr1-xSi2O2N2: Eu2+x) were indexed to the SrSi2O2N2 phase and an unknown intermediate phase. The photoluminescence properties of these phosphors (Sr1−xSi2O2N2: Eu2+x) showed that the samples were excited from the UV to visible region due to the strong crystal field splitting of the Eu2+ ion. The emission spectra under excitation of 450 nm showed a bright color at 545-561 nm. The emission intensity increased gradually with increasing Eu2+ doping concentration ratio from 0.05 to 0.15. However, the emission intensity decreased suddenly when the Eu2+ concentration ratio was >0.2. As the doping concentration of Eu2+ was increased, there was a red shift in the continuous emission peak. These results suggest that Sr1-xSi2O2N2: Eu2+x phosphor can be used in blue-pumped white light emitting diodes.  相似文献   

4.
In this work, we report on two properties of the oxidation of tantalum silicide (Ta2Si) on SiC substrates making this material of interest as insulator for many wide bandgap or compound semiconductors. The relatively high oxidation rate of tantalum silicide to form high-k insulator layers and its ability for being oxidized in diluted N2O ambient in a manner similar to the oxidation in O2 are investigated. Metal-insulator-semiconductor capacitors have been used to establish the actual applicability and constrain of the high-k insulator depending on the oxidation conditions. At 1050 °C, the reduction of the oxidation time from 1 h to 5 min affects primordially the SiOx interfacial layer formed between the bulk insulator and the substrate. This interfacial layer strongly influences the metal-insulator-semiconductor performances of the oxidized Ta2Si layer. The bulk insulator basically remains unaffected although some structural differences arise when the oxidation is performed in N2O.  相似文献   

5.
A multilayered Si nanocrystal-doped SiO2/Si (or Si-nc:SiO2/Si) sample structure is studied to acquire strong photoluminescence (PL) emission of Si via modulating excess Si concentration. The Si-nc:SiO2 results from SiO thin film after thermal annealing. The total thickness of SiO layer remains 150 nm, and is partitioned equally into a number of sublayers (N = 3, 5, 10, or 30) by Si interlayers. For each N-layered sample, a maximal PL intensity of Si can be obtained via optimizing the thickness of Si interlayer (or dSi). This maximal PL intensity varies with N, but the ratio of Si to O is nearly a constant. The brightest sample is found to be that of N = 10 and dSi = 1 nm, whose PL intensity is ∼5 times that of N = 1 without additional Si doping, and ∼2.5 times that of Si-nc:SiO2 prepared by co-evaporating of SiO and Si at the same optimized ratio of Si to O. Discussions are made based on PL, TEM, EDX and reflectance measurements.  相似文献   

6.
The positive secondary ion yields of B+ (dopant), Si+ and Ge+ were measured for Si1−xGex (0 ≤ x ≤ 1) sputtered by 5.5 keV 16O2+ and 18O2+. It is found that the useful yields of Ge+ and B+ suddenly drop by one order of magnitude by varying the elemental composition x from 0.9 to 1 (pure Ge). In order to clarify the role of oxygen located near surface regions, we determined the depth profiles of 18O by nuclear resonant reaction analysis (NRA: 18O(p,α)15N) and medium energy ion scattering (MEIS) spectrometry. Based on the useful yields of B+, Si+ and Ge+ dependent on x together with the elemental depth profiles determined by NRA and MEIS, we propose a probable surface structure formed by 5.5 keV O2+ irradiation.  相似文献   

7.
Molecular dynamics (MD) simulations of sputtering process with fluorine cluster impact onto silicon targets were performed. By iterating collisional simulations on a same target, accumulation of incident atoms and evolution of surface morphology were examined as well as emission process of precursors. When (F2)300 clusters were sequentially irradiated on Si(1 0 0) target at 6 keV of total incident energy, column-like surface structure covered with F atoms was formed. As the number of incident clusters increased, sputtering yield of Si atoms also increased because the target surface was well fluoridised to provide SiFx precursors. Size distribution of emitted particles showed that SiF2 was the major sputtered particle, but various types of silicon-fluoride compounds such like Si2Fx, Si3Fx and very large molecules consists of 100 atoms were also observed. This size distribution and kinetic energy distribution of desorbed materials were studied, which showed that the sputtering mechanism with reactive cluster ions is similar to that under thermal equilibrium condition at high-temperature.  相似文献   

8.
Infrared reflection absorption spectroscopy that used buried metal layer substrates (BML-IRRAS) and density functional cluster calculations were employed to investigate the water related oxidation reactions of 2H + H2O/Si(1 0 0)-(2 × 1), 2D + H2O/Si(1 0 0)-(2 × 1), and H2O + H/Si(1 0 0)-(2 × 1). In addition to the oxygen inserted coupled monohydrides, which were previously reported in the former reaction system, we report several other oxidized Si hydride species in our BML-IRRAS experiments. Three new pairs of vibrational bands are identified between 900 and 1000 cm−1. These vibrational frequencies were calculated using Si9 and Si10 cluster models that included all possible structures from zero to five oxygen insertions into the top layer silicon atoms using a B3LYP gradient corrected density functional method with a polarized 6-31G** basis set for all atoms. The three pairs of vibrational modes are assigned to the scissoring modes of adjacent and isolated SiH2 with zero, one, and two oxygen atoms inserted into the Si back bonds. All the other newly observed vibrational peaks related to Si oxidation are also assigned in this study. The Si-O stretching bands observed in the reaction 2D + H2O/Si(1 0 0)-(2 × 1) show an isotope effect, which suggests that in the system 2H + H2O/Si(1 0 0)-(2 × 1) also, hydrogen atom tunneling plays an important role for the insertion of oxygen atoms into Si back bonds that form oxidized adjacent dihydrides.  相似文献   

9.
Five-layered Si/SixGe1−x films on Si(1 0 0) substrate with single-layer thickness of 30 nm, 10 nm and 5 nm, respectively were prepared by RF helicon magnetron sputtering with dual targets of Si and Ge to investigate the feasibility of an industrial fabrication method on multi-stacked superlattice structure for thin-film thermoelectric applications. The fine periodic structure is confirmed in the samples except for the case of 5 nm in single-layer thickness. Fine crystalline SixGe1−x layer is obtained from 700 °C in substrate temperature, while higher than 700 °C is required for Si good layer. The composition ratio (x) in SixGe1−x is varied depending on the applied power to Si and Ge targets. Typical power ratio to obtain x = 0.83 was 7:3, Hall coefficient, p-type carrier concentration, sheet carrier concentration and mobility measured for the sample composed of five layers of Si (10 nm)/Si0.82Ge0.18 (10 nm) are 2.55 × 106 /°C, 2.56 × 1012 cm−3, 1.28 × 107 cm−2, and 15.8 cm−2/(V s), respectively.  相似文献   

10.
Molecular dynamics simulations of the interaction between CFx (x = 2, 3) molecules and crystalline as well as amorphous Si3N4 and SiO2 surfaces using a density-functional based method are reported. The binding energies of various configurations at the crystalline surfaces were calculated. The effect of hydrogen substitution was studied.  相似文献   

11.
Annealing-temperature dependence of the thermal stability and chemical bonding states of AlOxNy/SiO2/Si gate stacks grown by metalorganic chemical vapor deposition (MOCVD) using new chemistry was investigated by synchrotron radiation photoemission spectroscopy (SRPES). Results have confirmed the formation of the AlN and AlNO compounds in the as-deposited samples. Annealing the AlOxNy samples in N2 ambient in 600-800 °C promotes the formation of SiO2 component. Meanwhile, there is no formation of Al-O-Si and Al-Si binding states, suggesting no interdiffusion of Al with the Si substrate. A thermally induced reaction between Si and AlOxNy to form volatile SiO and Al2O is suggested to be responsible for the full disappearance of the Al component that accompanies annealing at annealing temperature of 1000 °C. The released N due to the breakage of the Al-N bonding will react with the SiO2 interfacial layer and lead to the formation of the Si3-N-O/Si2-N-O components at the top of Si substrate. These results indicate high temperature processing induced evolution of the interfacial chemistry and application range of AlOxNy/Si gate stacks in future CMOS devices.  相似文献   

12.
Hf1−xSixOy is an attractive candidate material for high-k dielectrics. We report in this work the deposition of ultra-thin Hf1−xSixOy films (0.1 ≤ x ≥ 0.6) on silicon substrate at 450 °C by UV-photo-induced chemical vapour deposition (UV-CVD) using 222 nm excimer lamps. Silicon(IV) and hafnium(IV) organic compounds were used as the precursors. Films from around 5 to 40 nm in thickness with refractive indices from 1.782 to 1.870 were grown. The deposition rate was found to be of 6 nm/min at a temperature of 450 °C. The physical, interfacial and electrical properties of hafnium silicate (Hf1−xSixOy) thin films were investigated by using X-ray photoelectron spectroscopy, ellipsometry, FT-IR, C-V and I-V measurements. XRD showed that they were basically amorphous, while Fourier transform infrared spectroscopy (FT-IR), clearly revealed Hf-O-Si absorption in the photo-CVD deposited Hf1−xSixOy films. Surface and interfacial properties were analysed by TEM and XPS. It is found that carbon content in the films deposited by UV-CVD is very low and it also decreases with increasing Si/(Si + Hf) ratio, as low as about 1 at.% at the Si/(Si + Hf) ratio of 60 at.%.  相似文献   

13.
Eu2+-doped BaSi6N8O phosphors (Ba1−xEuxSi6N8O, 0.005≤x≤0.2) were synthesized by gas-pressure sintering of the powder mixture of BaCO3, Si3N4, and Eu2O3 at 1750 °C under 0.5 MPa N2. The fired powder consists of a major BaSi6N8O phase and a trace amount of impurity phases. The structural result of the BaSi6N8O powder, refined by the Rietveld method, agrees well with that of single crystals. A wide blue luminescence band peaking at about 500 nm is observed in BaSi6N8O:Eu2+, upon excitation with the ultraviolet light of 310 nm. Although Eu is covalently bonded to six nearest neighbor nitrogen atoms, the luminescence of Eu2+ is not significantly redshifted but shows a very narrow excitation spectrum at high energies. The origin of the short-wavelength luminescence is mainly ascribed to a small crystal-field splitting as a result of extremely long distances between europium and nitrogen ligands in BaSi6N8O:Eu2+.  相似文献   

14.
We have investigated the phase separation and silicon nanocrystal (Si NC) formation in correlation with the optical properties of Si suboxide (SiOx, 0 < x < 2) films by thermal annealing in high vacuum. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous oxide/silane (N2O/SiH4) flow ratios. The as-deposited films show increased Si concentration with decreasing N2O/SiH4 flow ratio, while the deposition rate and surface roughness have strong correlations with the flow ratio in the N2O/SiH4 reaction. After thermal annealing at temperatures above 1000 °C, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy manifest the progressive phase separation and continuous growth of crystalline-Si (c-Si) NCs in the SiOx films with increasing annealing temperature. We observe a transition from multiple-peak to single peak of the strong red-range photoluminescence (PL) with increasing Si concentration and annealing temperature. The appearance of the single peak in the PL is closely related to the c-Si NC formation. The PL also redshifts from ∼1.9 to 1.4 eV with increasing Si concentration and annealing temperature (i.e., increasing NC size). The good agreements of the PL evolution with NC formation and the PL peak energy with NC size distribution support the quantum confinement model.  相似文献   

15.
The reactivity of H2 gas with the In and Sn surfaces was quantitatively measured by a volumetric method at pressures ranging from 10−7 to 10−2 Pa at 298 K. Significant enhancement of H2 reactivity was observed when O2 or H2O preadsorbed on the surface of In and Sn before H2 exposure. The formation of the oxygen deficient SnO2−x and In2O3−z in the surface layers is proposed as a reason for such a facilitating the H2 dissociation and resulting in the enhancement of the H2 reactivity at 298 K.  相似文献   

16.
The method for Brönsted acidity measurement based on TPD of alkyl amines desorption by gas-chromatography or thermogravimetry was adapted for simultaneous TG/DTG-DTA analysis. The acidity measurements were focused on the 12-tungstophosphoric acid (H3PW12O40) and its salts, especially with Cesium since these posses the highest Brönsted acidity and they are among the most interesting catalysts. The n-butyl amine (NBA) desorption takes place in three steps for CsxH3−xPW12O40, x = 0-2, and four steps for the Cs2.5H0.5PW12O40. The steps of desorption correspond to the release of NBA molecules in stages, as NBA or butene molecules resulted from the Hofmann elimination reaction and NH3 + H2O formed by decomposition of ammonium salt. The quantities of desorption products, C4H8 and NH3 + H2O, corresponding to the stages with the maximum desorption rates at 400-420 °C, respectively 560-600 °C, are in the stoichiometric ratio with the Brönsted acidity.  相似文献   

17.
Growth of Ag islands under ultrahigh vacuum condition on air-exposed Si(0 0 1)-(2 × 1) surfaces has been investigated by in-situ reflection high energy electron diffraction (RHEED). A thin oxide is formed on Si via exposure of the clean Si(0 0 1)-(2 × 1) surface to air. Deposition of Ag on this oxidized surface was carried out at different substrate temperatures. Deposition at room temperature leads to the growth of randomly oriented Ag islands while well-oriented Ag islands, with (0 0 1)Ag||(0 0 1)Si, [1 1 0]Ag||[1 1 0]Si, have been found to grow at substrate temperatures of ≥350 °C in spite of the presence of the oxide layer between Ag islands and Si. The RHEED patterns show similarities with the case of Ag deposition on H-passivated Si(0 0 1) surfaces.  相似文献   

18.
Spherical-particle MCM-41 was synthesized at room temperature, and, then, impregnated with aqueous solutions of NH4VO3 to produce variously loaded VOx/MCM-41 composite materials. Bulk and surface properties of the materials thus produced were characterized by means of X-ray powder diffractometry (XRD), infrared spectroscopy (FTIR), N2 sorptiometry and X-ray photoelectron spectroscopy (XPS). Results obtained indicated that subsequent calcination at 550 °C (for 2 h) of the blank and impregnated MCM-41 particles, results in materials assuming the same bulk structure of MCM-41, and exposing uniformly mesporous, high area surfaces (Pw = 2.0-2.3 nm; 974-829 m2/g), except for the material obtained at 20 wt%-V2O5 that was shown to suffer a considerable loss on surface area (down to 503 m2/g). XPS results implied that the immobilization of the VOx species occurs via interaction with surface OH/H2O groups of MCM-41, leading to the formation of vanadate (VO3) surface species, as well as minor V-O-Si and V2O5-like species. However, in all cases, the vanadium sites remained pentavalent and exposed on the surface.  相似文献   

19.
The layer structures of H8Si8O12 molecules on highly oriented pyrolitic graphite have been investigated by scanning tunneling microscopy. Two kinds of ordered assemblies of H8Si8O12 monolayers are observed, with a unit cell of 6.5 Å × 6.5 Å and 7.2 Å × 9.4 Å, respectively. On the basis of the shapes and sizes of the H8Si8O12 STM images and the heights of the H8Si8O12 monolayers, H8Si8O12 can be adsorbed with one face of its cage structure in contact with the substrate surface or with a tilted orientation.  相似文献   

20.
The surfaces of nanostructured, porous SiOx/Si (air-oxidized Si) and SiOx thin films, deposited by excimer laser ablation in He and He + O2 gas ambients, respectively, have been modified by the deposition of a monofunctional organosilane. They were characterized using photoacoustic Fourier-transform infrared (FTIR) X-ray photoelectron (XPS) spectroscopies, and field-emission scanning electron microscopy (FESEM). Photoacoustic FTIR analysis indicates that the organosilane has hydrolyzed to form a silanol, which has chemically reacted with SiOx through its surface silanol (SiOH) group, to form siloxane (SiOSi) structures. An enhanced IR spectral signal is found, due to the expansion and contraction of both the pores of the solid and the gas within them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号