首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
胡真真  王雷  姚超英  朱岩  张培敏 《分析化学》2011,39(8):1261-1265
以去离子水为萃取剂,通过加电膜萃取装置萃取了乙酸丁酯中的无机阴离子.在600 V直流电压作用下,乙酸丁酯中的4种无机阴离子经中空纤维膜膜孔进入膜内的去离子水中,采用离子色谱对萃取液进行分析.最佳萃取条件为:施加电压600 V;搅拌速度600 r/min;萃取时间5 min.应用本方法测定乙酸丁酯样品,4种无机阴离子的线...  相似文献   

2.
In this work,a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water.Inorganic anions in slightly soluble organic solvents can be determined by the in-line hollow fiber membrane extractor coupled with ion chromatography at first time.Different aspects of the extraction procedure such as magnetic stirring speed, extraction flow rate and extraction time were optimized to achieve high extraction efficiency and good separation results. Satisfact...  相似文献   

3.
Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides.  相似文献   

4.
A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1‐heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R2) between 0.987 and 0.999 were obtained. The LODs of the EME‐IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications.  相似文献   

5.
In hollow fiber membrane liquid-phase microextraction (LPME), target analytes are extracted from aqueous samples and into a supported liquid membrane (SLM) sustained in the pores in the wall of a small porous hollow fiber, and further into an acceptor phase present inside the lumen of the hollow fiber. The acceptor phase can be organic, providing a two-phase extraction system compatible with capillary gas chromatography, or the acceptor phase can be aqueous resulting in a three-phase system compatible with high-performance liquid chromatography or capillary electrophoresis. Due to high enrichment, efficient sample clean-up, and the low consumption of organic solvent, substantial interest has been devoted to LPME in recent years. This paper reviews important applications of LPME with special focus on bioanalytical and environmental chemistry, and also covers a new possible direction for LPME namely electromembrane extraction, where analytes are extracted through the SLM and into the acceptor phase by the application of electrical potentials.  相似文献   

6.
A large screening of different components in the supported liquid membrane (SLM) in electromembrane extraction (EME) was performed to test the extraction efficiency on eight model peptides. Electromembrane extraction from a 500 μL acidified aqueous sample containing the model peptides in the concentration 10 μg/mL was used. Extraction time was 5 min with an electric potential of 10 V and 900 rpm agitation of the sample vial. The samples were extracted through a hollow fiber-based SLM with different compositions of organic solvents and carriers. A small volume of acidified acceptor solution (25 μL) was after extraction analyzed directly, or with some dilution, on CE or HPLC. This article has identified mono- or di-substituted phosphate groups as the prominent group of carrier molecules needed to obtain acceptable recoveries. For the organic solvents, primary alcohols and ketones have shown promise regarding recovery and reproducibility, with some differences in selectivity. A new composition of the SLM, namely 2-octanone and tridecyl phosphate (90:10 w/w) has proved to give higher extraction recoveries and lower standard deviation than SLMs previously reported in the literature.  相似文献   

7.
The present work has for the first time demonstrated electromembrane extraction (EME) at voltages obtainable by common batteries. Five basic drugs were extracted from acidified aqueous sample solutions, across a supported liquid membrane (SLM) consisting of 1-isopropyl-4-nitrobenzene impregnated in the walls of a hollow fiber, and into an acidified aqueous acceptor solution present inside the lumen of the hollow fiber with potential differences of 1-10 V applied over the SLM. Extractions from 1 ml standard solutions prepared in 10mM HCl for 5 min and with a potential of 10 V demonstrated analyte recoveries of 50-93% in 25 microl of 10mM HCl as acceptor solution. This corresponds to enrichment factors of 20-37. Similar results were obtained with a common 9 V battery as power supply. Recoveries from low-voltage EME on human plasma, urine, and breast milk diluted with acetate buffer (pH 4) demonstrated recoveries in the range of 37-55% after 5 min of extraction. Excellent selectivity was demonstrated as no interfering peaks were detected. Standard curves in the range of 0.0625-0.62 5 microg/ml demonstrated correlation coefficients of 0.994-0.999. Extraction recoveries from human plasma, urine or breast milk were not found to be sensitive towards individual variations. The results show that low-voltage EME has a future potential as a simple, selective, and time-efficient sample preparation technique of biological fluids.  相似文献   

8.
1-Phenylethanol can be produced by biotransformation of acetophenone using microorganisms. The next step is the separation of biomass from the fermentation solution (e.g. using microfiltration) and then the separation of the product. Membrane extraction was studied in the presented work for this purpose. Equilibria of acetophenone and 1-phenylethanol in the equilibrium system solute-organic solvent-water were investigated for three different organic solvents (heptane, toluene, ethyl acetate). On the basis of this investigation, extraction kinetics of both solutes from the model aqueous solution to the heptane organic phase, using a hollow fiber membrane module, were studied. To simulate the extraction kinetics, mathematical model of an experimental parallel flow hollow fiber contactor is presented and verified using experimental values with good agreement. Extraction kinetics for the investigated organic solvents were simulated and compared using the verified mathematical model and the chosen membrane extraction parameters.  相似文献   

9.
Application of hollow fiber-based electromembrane extraction was studied for extraction and quantification of phenytoin from exhaled breath condensate (EBC). Phenytoin is extracted from EBC through a supported liquid membrane consisting of 1-octanol impregnated in the walls of a hollow fiber, and into an alkaline aqueous acceptor solution inside the lumen of the fiber. Under the obtained conditions of electromembrane extraction, that is, the extraction time of 15 min, stirring speed of 750 rpm, donor phase pH at 11.0, acceptor pH at 13.0, and an applied voltage of 15 V across the supported liquid membrane, an enrichment factor of 102-fold correspond to extraction percent of 25.5% was achieved. Good linearity was obtained over the concentration range of 0.001–0.10 µg/mL (r2 = 0.9992). Limits of detection and quantitation were 0.001 and 0.003 µg/mL, respectively. The proposed method was successfully applied to determine phenytoin from EBC samples of patients receiving the drug. No interfering peaks were detected that indicating excellent selectivity of the method. The intra- and interday precisions (RSDs) were less than 14%.  相似文献   

10.
In the present study, for the first time electromembrane extraction followed by high‐performance liquid chromatography coupled with ultraviolet detection was developed and validated for the determination of tartrazine in some food samples. The parameters influencing electromembrane extraction were evaluated and optimized. The membrane consists of 1‐octanol immobilized in the pores of a hollow fiber. As a driving force, a 30 V electrical field was applied to make the analyte migrate from sample solution with pH 3, through the supported liquid membrane into an acceptor solution with pH 10. Best preconcentration (enrichment factor >21) was obtained in extraction duration of 15 min. Effects of some solid nano‐sorbents like carbon nanotubes and molecularly imprinted polymers on membrane performance and electromembrane extraction efficiency were evaluated. The method provided the linearity in the range 25–1000 ng/mL for tartrazine (R2 > 0.9996) with repeatability range (RSD) between 3.8 and 8.5% (n = 3). The limits of detection and quantitation were 7.5 and 25 ng/mL, respectively. Finally, the method was applied to the determination and quantification of tartrazine from some food samples with relative recoveries in the range between 90 and 98%.  相似文献   

11.
This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency.  相似文献   

12.
A new organic solvent-free microextraction technique termed liquid-gas-liquid microextraction (LGLME) was developed. In this technique, a small amount (6 microl) of aqueous acceptor solution (0.5M NaOH) is introduced into the channel of a 2.65 cm polypropylene hollow fiber. The hollow fiber is then immersed in an aqueous sample donor solution. The aqueous acceptor phase in the channel of the hollow fiber is separated from the sample solution by the hydrophobic microporous hollow fiber wall with air inside its pores. The analytes (phenols) passed through the microporous hollow fiber membrane by gas diffusion and were then trapped by the basic acceptor solution. After extraction, the acceptor solution was withdrawn into a microsyringe and injected into a capillary electrophoresis sample vial for subsequent analysis. Limits of detection of between 0.5 and 10 microg/l for eight phenols could be achieved. The relative standard deviations (n=6) of this technique between 2.7 and 7.6%. The technique also provides good enrichment factors for all the eight analytes.  相似文献   

13.
Different organic borates, phosphates, sulphates, and carboxylic acids are evaluated as extraction carriers in three-phase liquid-phase microextraction (LPME). Hydrophilic basic drugs form ion-pairs with the carriers and are extracted as ion-pair complexes into an organic liquid membrane of n-octanol or peppermint oil immobilized in the pores of a polypropylene hollow fiber. From this point, the basic drugs are released into a 20-microL solution of 50mM HCl placed inside the lumen of the hollow fiber (acceptor solution). Simultaneously, the carrier is neutralized by protons from the acceptor solution (protonated to maintain the charge balance). Both water-soluble and water-insoluble carriers are tested. One promising candidate among the water-soluble carriers is 1-heptanesulfonic acid. This is added to the sample solution to a final concentration of 25mM and served to ion-pair the analytes within the sample solution. Among the less water-soluble candidates, a mixture of di(2-ethylhexyl) phosphate (DEHP) and tris(2-ethylhexyl) phosphate (TEHP) serve as efficient carriers. Ten percent (w/w) of each of DEHP and TEHP are added to the organic liquid membrane, and these carriers principally worked through ion-pairing with the analytes at the interface between the sample solution and the organic liquid membrane. Several carriers are found to be compatible with human plasma samples, and bromthymol blue is particularly efficient in combination with these protein-containing matrices. Following optimization of the conditions for bromthymol blue, including saturation of the plasma samples with sodium sulphate, extraction recoveries between 45% and 75% are obtained for eight model drugs after 60 min of extraction. With bromthymol blue as the carrier, highly acceptable validation data are obtained for phenylpropanolamine and practolol extracted from human plasma.  相似文献   

14.
For the first time, electromembrane extraction combined with liquid chromatography and tandem mass spectrometry was applied for the determination of urinary benzene, toluene, ethylbenzene, and xylene metabolites. S‐Phenylmercapturic acid, hippuric acid, phenylglyoxylic acid, and methylhippuric acid isomers were extracted from human urine through a supported liquid membrane consisting of 1‐octanol into an alkaline acceptor solution filling the inside of a hollow fiber by application of an electric field. Various extraction factors were investigated and optimized using response surface methodology, the statistical method. The optimum conditions were established to be 300 V applied voltage, 15 min extraction time, 1500 rpm stirring speed, and 5 mM ammonium acetate (pH 10.2) acceptor solution. The method was validated with respect to selectivity, linearity, accuracy, precision, limit of detection, limit of quantification, recovery, and reproducibility. The results showed good linearity (r2 > 0.995), precision, and accuracy. The extract recoveries were 52.8–79.0%. Finally, we applied this method to real samples and successfully measured benzene, toluene, ethylbenzene, and xylene metabolites.  相似文献   

15.
Dynamic three-phase hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) based on two immiscible organic solvents, with automated movement of organic acceptor phase to facilitate mass transfer was introduced for the first time. Polycyclic aromatic hydrocarbons were used as model compounds and extracted from water and soil samples. The extraction involved filling an 8 cm length of hollow fiber with 25 μL of organic acceptor solvent using a microsyringe, followed by impregnation of the pores in the fiber wall with n-dodecane. The fiber was then immersed in 20 mL of aqueous sample solution. During extraction, the organic acceptor phase was repeatedly moved in the lumen of the hollow fiber by movement of the syringe plunger controlled by programmable syringe pump. Following this microextraction, 2 μL of organic acceptor phase was injected into gas chromatography-flame ionization detector. This new technique provided up to 554-fold preconcentration of the analytes under the optimized conditions. Good repeatabilities (with RSDs ≤8.4%) were obtained. Detection limits were in the range of 0.2-0.5 μg/L. The utilization of the proposed method for extraction of the polycyclic aromatic hydrocarbons from different real samples (such as water and soil samples) also gave good precision and recovery.  相似文献   

16.
In the present study, for the first time electromembrane extraction followed by high performance liquid chromatography coupled with ultraviolet detection was optimized and validated for quantification of four gonadotropin‐releasing hormone agonist anticancer peptides (alarelin, leuprolide, buserelin and triptorelin) in biological and aqueous samples. The parameters influencing electromigration were investigated and optimized. The membrane consists 95% of 1‐octanol and 5% di‐(2‐ethylhexyl)‐phosphate immobilized in the pores of a hollow fiber. A 20 V electrical field was applied to make the analytes migrate from sample solution with pH 7.0, through the supported liquid membrane into an acidic acceptor solution with pH 1.0 which was located inside the lumen of hollow fiber. Extraction recoveries in the range of 49 and 71% within 15 min extraction time were obtained in different biological matrices which resulted in preconcentration factors in the range of 82–118 and satisfactory repeatability (7.1 < RSD% < 19.8). The method offers good linearity (2.0–1000 ng/mL) with estimation of regression coefficient higher than 0.998. The procedure allows very low detection and quantitation limits of 0.2 and 0.6 ng/mL, respectively. Finally, it was applied to determination and quantification of peptides in human plasma and wastewater samples and satisfactory results were yielded.  相似文献   

17.
In this paper, an electromembrane extraction (EME) combined with a HPLC procedure using diode array (DAD) and fluorescence detection (FLD) has been developed for the determination of six widely used non-steroidal anti-inflammatory drugs (NSAIDs): salicylic acid (SAC), ketorolac (KTR), ketoprofen (KTP), naproxen (NAX), diclofenac (DIC) and ibuprofen (IBU). The drugs were extracted from basic aqueous sample solutions, through a supported liquid membrane (SLM) consisting of 1-octanol impregnated in the walls of a S6/2 Accurel® polypropylene hollow fiber, and into a basic aqueous acceptor solution resent inside the lumen of the hollow fiber with a potential difference of 10 V applied over the SLM. Extractions that were carried out in 10 min using a potential of 10 V from pH 12 NaOH aqueous solutions shown concentration enrichments factors of 28-49 in a pH 12 NaOH aqueous acceptor solution. The proposed method was successfully applied to urban wastewaters. Excellent selectivity was demonstrated as no interfering peaks were detected. The procedure allows very low detection and quantitation limits of 0.0009-9.0 and 0.003-11.1 μg L−1, respectively.  相似文献   

18.
Electromembrane extraction using a polypropylene hollow fiber impregnated with 1‐ethyl‐2‐nitrobenzene was evaluated for the extraction and preconcentration of the fungicides thiabendazole and carbendazim from water samples before capillary electrophoresis analysis. The composition of the supported liquid membrane, the HCl concentration in the acceptor solution, and the stirring rate (of the donor solution) were optimized using the one‐variable‐at‐a‐time method. In contrast, a face‐centered central composition design was used for optimization of voltage, extraction time, and concentration of HCl in the donor solution. After optimization, electromembrane extraction provided enrichment factors of 50 and 26 for thiabendazole and carbendazim that allowed us to achieve limits of detection of 1.1 and 2.3 μg/L, respectively. Repeatability (intraday precision) expressed as the relative standard deviation varied from 2.5 to 2.8%, while the interday precision ranged from 3.1 to 3.3%. The proposed method was applied for analysis of samples of tap and river water, and acceptable precision and accuracy were attained.  相似文献   

19.
Two different modes of three‐phase hollow fiber liquid‐phase microextraction were studied for the extraction of two herbicides, bensulfuron‐methyl and linuron. In these two modes, the acceptor phases in the lumen of the hollow fiber were aqueous and organic solvents. The extraction and determination were performed using an automated hollow fiber microextraction instrument followed by high‐performance liquid chromatography. For both three‐phase hollow fiber liquid‐phase microextraction modes, the effect of the main parameters on the extraction efficiency were investigated and optimized by central composite design. Under optimal conditions, both modes showed good linearity and repeatability, but the three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency and figures of merit. The calibration curves for three‐phase hollow fiber liquid‐phase microextraction with an organic acceptor phase were linear in the range of 0.3–200 and 0.1–150 μg/L and the limits of detection were 0.1 and 0.06 μg/L for bensulfuron‐methyl and linuron, respectively. For the conventional three‐phase hollow fiber liquid‐phase microextraction, the calibration curves were linear in the range of 3.0–250 and 15–400 μg/L and LODs were 1.0 and 5.0 μg/L for bensulfuron‐methyl and linuron, respectively. The real sample analysis was carried out by three‐phase hollow fiber liquid phase microextraction based on two immiscible organic solvents because of its more favorable characteristics.  相似文献   

20.
This fundamental work illustrates for the first time the possibility of exhaustive extraction of peptides using electromembrane extraction (EME) under low system-current conditions (<50 μA). Bradykinin acetate, angiotensin II antipeptide, angiotensin II acetate, neurotensin, angiotensin I trifluoroacetate, and leu-enkephalin were extracted from 600 μL of 25 mM phosphate buffer (pH 3.5), through a supported liquid membrane (SLM) containing di-(2-ethylhexyl)-phosphate (DEHP) dissolved in an organic solvent, and into 600 μL of an acidified aqueous acceptor solution using a thin flat membrane-based EME device. Mass transfer of peptides across the SLM was enhanced by complex formation with the negatively charged DEHP. The composition of the SLM and the extraction voltage were important factors influencing recoveries and current with the EME system. 1-nonanol diluted with 2-decanone (1:1 v/v) containing 15% (v/v) DEHP was selected as a suitable SLM for exhaustive extraction of peptides under low system-current conditions. Interestingly, increasing the SLM volume from 5 to 10 μL was found to be beneficial for stable and efficient EME. The pH of the sample strongly affected the EME process, and pH 3.5 was found to be optimal. The EME efficiency was also dependent on the acceptor solution composition, and the extraction time was found to be an important element for exhaustive extraction. When EME was carried out for 25 min with an extraction voltage of 15 V, the system-current across the SLM was less than 50 μA, and extraction recoveries for the model peptides were in the range of 77–94%, with RSD values less than 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号