共查询到20条相似文献,搜索用时 10 毫秒
1.
Gürbüz N Özcan EÖ Özdemir İ Çetinkaya B Şahin O Büyükgüngör O 《Dalton transactions (Cambridge, England : 2003)》2012,41(8):2330-2339
The reaction of [RuCl(2)(p-cymene](2) with Ag-N-heterocyclic carbene (NHC) complexes yields a series of [(p-cymene)Ru(NHC)] complexes (2a-f). All synthesised compounds were characterized by elemental analysis, NMR spectroscopy and the molecular structure of 2a was determined by X-ray crystallography. All complexes have been tested as catalysts for the transfer hydrogenation of aromatic ketones, showing excellent activity in this reaction. 相似文献
2.
Voutchkova AM Appelhans LN Chianese AR Crabtree RH 《Journal of the American Chemical Society》2005,127(50):17624-17625
N,N'-Disubstituted imidazolium-2-carboxylates are efficient precursors to NHC complexes of Rh, Ir, Pd, and Ru. 相似文献
3.
4.
Jia-Feng Sun Brenda A. Dougan Yong Cheng Xue-Tai Chen Zi-Ling Xue 《Journal of organometallic chemistry》2009,694(13):2096-410
Iridium complexes containing quinoline-functionalized N-heterocyclic carbene (NHC) ligands have been synthesized by the transmetalation route from silver carbene precursors. The silver complexes undergo a facile reaction with [Ir(COD)Cl]2 (COD = 1,5-cyclooctadiene) to yield a series of carbene complexes [(NHC)Ir(COD)Cl] (NHC = 3-methyl-1-(8-quinolylmethyl)imidazole-2-ylidene (2a); 3-n-butyl-1-(8-quinolylmethyl)imidazole-2-ylidene (2b); 3-benzyl-1-(8-quinolylmethyl)imidazole-2-ylidene (2c); 1,3-di(8-quinolylmethyl)imidazole-2-ylidene (2d). The coordinated COD was replaced by carbon monoxide to yield the corresponding carbonyl species [(NHC)Ir(CO)2Cl] (3). Complexes 2 and 3 have been characterized by IR, ESI-MS, 1H and 13C NMR and elemental analyses. The molecular structures of complexes 2b and 2c have been confirmed by single-crystal X-ray diffraction. Two analogous Ir(I) complexes 5 and 6 with naphthalene-containing NHC have also been synthesized and characterized. These Ir(I) complexes in the current work have been proved to be active catalysts in the transfer hydrogenation of ketones to alcohols using 2-propanol as the hydrogen source. 相似文献
5.
An N-heterocyclic carbene complex was found to be the active catalyst in the Rh(I)-catalyzed intramolecular coupling of an alkenyl group to a C-H bond of a substituted benzimidazole. Kinetic studies demonstrated that the catalytic cyclization is zero-order in substrate and first-order in catalyst. Furthermore, DFT calculations with a model system suggest that the rate-limiting step involves insertion of the alkenyl double bond into the rhodium-carbene bond. 相似文献
6.
Scott NM Dorta R Stevens ED Correa A Cavallo L Nolan SP 《Journal of the American Chemical Society》2005,127(10):3516-3526
Reactivity and structural studies of unusual rhodium and iridium systems bearing two N-heterocyclic carbene (NHC) ligands are presented. These systems are capable of intramolecular C-H bond activation and lead to coordinatively unsaturated 16-electron complexes. The resulting complexes can be further unsaturated by simple halide abstraction, leading to 14-electron species bearing an all-carbon environment. Saturation of the vacant sites in the 16- and 14-electron complexes with carbon monoxide permits a structural comparison. DFT calculations show that these electrophilic metal centers are stabilized by pi-donation of the NHC ligands. 相似文献
7.
Jazzar RF Macgregor SA Mahon MF Richards SP Whittlesey MK 《Journal of the American Chemical Society》2002,124(18):4944-4945
Thermolysis of Ru(PPh3)3(CO)H2 with the N-heterocyclic carbene bis(1,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene) (IMes) results in C-C activation of an Ar-CH3 bond in one of the mesityl rings of the carbene ligand. Upon addition of IMes to Ru(PPh3)3(CO)H2 at room temperature in the presence of an alkene, C-H bond activation is observed instead. The thermodynamics of these C-C and C-H cleavage reactions have been probed using density functional theory. 相似文献
8.
Beyhan Yiğit Murat Yiğit İsmail Özdemir Engin Çetinkaya 《Transition Metal Chemistry》2012,37(3):297-302
Three RuCl2(η6-arene, η1-carbene) and two RuCl2(NHC)(arene) complexes have been prepared by the reaction of bis(1,3-dialkylperhydrobenzimidazol-2-ylidene) (1) and bis(1,3-dialkyl-4-methylzimidazolin-2-ylidene) (3) with [RuCl2(arene)]2 in toluene and characterized by elemental analysis, 1H NMR, 13C NMR and IR spectroscopy. The catalytic activities of these complexes were examined in the transfer hydrogenation of aromatic
ketones using 2-propanol as hydrogen source. 相似文献
9.
10.
11.
Burling S Paine BM Nama D Brown VS Mahon MF Prior TJ Pregosin PS Whittlesey MK Williams JM 《Journal of the American Chemical Society》2007,129(7):1987-1995
A series of ruthenium hydride N-alkyl heterocyclic carbene complexes has been investigated as catalysts for a tandem oxidation/Wittig/reduction reaction to give C-C bonds from alcohols. The C-H-activated carbene complex Ru(IiPr(2)Me(2))'(PPh(3))(2)(CO)H (9) proves to be the most active precursor catalyzing the reaction of PhCH(2)OH and Ph(3)P=CHCN in 3 h at 70 degrees C. These results provide (a) a rare case in which N-alkyl carbenes afford higher catalytic activity than their N-aryl counterparts and (b) a novel example of the importance of NHC C-H activation in a catalytic cycle. 相似文献
12.
A series of ruthenium-based olefin metathesis catalysts coordinated with unsymmetrical N-heterocyclic carbene (NHC) ligands has been prepared and fully characterized. These complexes are readily accessible in one or two steps from commercially available [(PCy(3))(2)Cl(2)Ru==CHPh]. All of the complexes reported herein promote the ring-closing of diethyldiallyl and diethylallylmethallyl malonate, the ring-opening metathesis polymerization of 1,5-cyclooctadiene, and the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, in some cases surpassing in efficiency the existing second-generation catalysts. Especially in the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, all new catalysts demonstrate similar or higher activity than the second-generation ruthenium catalysts and, most importantly, afford improved E/Z ratios of the desired cross-product at conversion above 60 %. The influence of the unsymmetrical NHC ligands on the initiation rate and the activation parameters for the irreversible reaction of these ruthenium complexes with butyl vinyl ether were also studied. Finally, the synthesis of the related chlorodicarbonyl(carbene) rhodium(I) complexes allowed for the study of the electronic properties of the new unsymmetrical NHC ligands that are discussed in detail. 相似文献
13.
4-Vinylbenzyl-substituted Ag(I) N-heterocyclic carbene (NHC) complexes and Ru(II) NHC complexes have been synthesized. The Ag(I) complexes were synthesized from the imidazolium salts and Ag2O in dichloromethane at room temperature. The Ru(II) complexes were prepared from Ag(I) NHC complexes by transmetallation. The six 4-Vinylbenzyl-substituted Ag(I) NHC complexes and six 4-Vinylbenzyl-substituted Ru(II) NHC complexes have been characterized by spectroscopic techniques and elemental analyses. The Ru(II) NHC complexes show catalytic activity for the transfer hydrogenation of ketones. 相似文献
14.
《Journal of Coordination Chemistry》2012,65(7):1236-1248
A new series of ruthenium(II) N-heterocyclic carbene complexes [RuL1,2,3(p-cymene)Cl2] (3a–c) (where L is a N-heterocyclic carbene), have been synthesized via transmetalation. The new ruthenium(II)-NHC complexes were applied to transfer hydrogenation of acetophenone derivatives and aldehydes using 2-propanol as a hydrogen source and KOH as a co-catalyst. The results show that the corresponding alcohols could be obtained in good yield with high catalyst activity (up to 100%) under mild conditions. [RuL1(p-cymene)Cl2] (3a) is much more active than the other complexes in transfer hydrogenation. Reactions, catalyzed by 3a–c, showed the highest reaction rates and yields of alcohol when the substrates bear more electron-withdrawing substituents. All new compounds were characterized by IR, elemental analysis, LC–MS (ESI), and NMR spectroscopy. 相似文献
15.
Two tripodal trisimidazolium ligand precursors have been tested in the synthesis of new N-heterocyclic carbene rhodium and iridium complexes. [Tris(3-methylbenzimidazolium-1-yl)]methane sulfate gave products with coordination of the decomposed precursor. [1,1,1-Tris(3-butylimidazolium-1-yl)methyl]ethane trichloride (TIMEH(3)(Bu)) coordinated to the metal in a chelate and bridged-chelate form, depending on the reaction conditions. The crystal structures of two of the products are described. The compounds resulting from the coordination with TIME(Bu) were tested in the catalytic hydrosilylation of terminal alkynes. 相似文献
16.
Wu X Li X Zanotti-Gerosa A Pettman A Liu J Mills AJ Xiao J 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(7):2209-2222
Asymmetric transfer hydrogenation (ATH) of ketones by formate in neat water is shown to be viable with Rh-TsDPEN and Ir-TsDPEN catalysts, derived in situ from [Cp*MCl2]2 (M=Rh, Ir) and TsDPEN. A variety of ketones were reduced, including nonfunctionalized aryl ketones, heteroaryl ketones, ketoesters, and unsaturated ketones. In comparison with Ir-TsDPEN and the related Ru II catalyst, the Rh III catalyst is most efficient in water, affording enantioselectivities of up to 99 % ee at substrate/catalyst (S/C) ratios of 100-1000 even without working under an inert atmosphere. The aqueous phase reduction is shown to be highly pH-dependent; the optimum pH windows for TOF greater than 50 mol mol(-1) h(-1) for Rh- and Ir-TsDPEN are 5.5-10.0 and 6.5-8.5, respectively. Outside the pH window, the reduction becomes slow or stagnant depending on the pH. However, the enantioselectivities erode only under acidic conditions. At a higher S/C ratio, the aqueous ATH by Rh-TsDPEN is shown to be product- as well as byproduct-inhibited; the product inhibition appears to stem at least partly from the reaction being reversible. The aqueous phase reduction is simple, efficient and environmentally benign, thus presenting a viable alternative for asymmetric reduction. 相似文献
17.
Takaki D Okayama T Shuto H Matsumoto S Yamaguchi Y Matsumoto S 《Dalton transactions (Cambridge, England : 2003)》2011,40(7):1445-1447
Indenyl-functionalised BEt(3)-adduct NHCs were prepared by the reaction of imidazolium pro-ligands with LiBEt(3)H. This compound was converted into the indenyl-coordinate molybdenum complex dangling the NHC·BEt(3) moiety as a substituent. The stepwise coordination of NHC afforded a chelate-type mononuclear complex as well as a bimetallic complex. 相似文献
18.
A series of novel imidazolium salts bearing hydrophilic tetraethylene glycol (TEG) and/or hydrophobic long-chain alkyl (n-C12) functionalities, which are precursors for desired N-heterocyclic carbene (NHC) ligands, were synthesized and characterized. Rh(I)-NHC complexes were prepared in good yields by the silver carbene transfer method with NHC-Ag species derived from the imidazolium salts. The molecular structure of the Rh(I)-NHC complex having n-C12 chains has been determined by a single-crystal X-ray diffraction study and the complex is found to possess extended alkyl chains with anti conformations in the solid state. Hydrosilylation with the Rh(I) complexes and Suzuki-Miyaura coupling reactions with the Pd(II) complexes with these NHC ligands were carried out. In the latter case, the TEG moiety enhances catalytic activity considerably. 相似文献
19.
Shibata T Hashimoto H Kinoshita I Yano S Nishioka T 《Dalton transactions (Cambridge, England : 2003)》2011,40(18):4826-4829
The first example of the diastereoselective synthesis induced by anomeric isomerism of sugar units in ligands of metal complexes was demonstrated. S and R configurations of chiral-at-metal Ir(III) and Rh(III) complexes were selectively obtained by using chelate-type NHC ligands with α- and β-glucopyranosyl units, respectively. 相似文献