首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We present a Chaplygin gas Friedmann-Robertson-Walker quantum cosmological model in the presence of the cosmological constant. We apply the Schutz’s variational formalism to recover the notion of time, and this gives rise to Wheeler-DeWitt equation for the scale factor. We study the early and late time universes and show that the presence of the Chaplygin gas leads to an effective positive cosmological constant for the late times. This suggests the possibility of changing the sign of the effective cosmological constant during the transition from the early times to the late times. For the case of an effective negative cosmological constant for both epoches, we solve the resulting Wheeler-DeWitt equation using the Spectral Method and find the eigenvalues and eigenfunctions for positive, zero, and negative constant spatial curvatures. Then, we use the eigenfunctions in order to construct wave packets for each case and obtain the time-dependent expectation value of the scale factors, which are found to oscillate between finite maximum and minimum values. Since the expectation value of the scale factors never tend to the singular point, we have an initial indication that this model may not have singularities at the quantum level.  相似文献   

2.
3.
A Vaidya spacetime is considered for gravitational collapse of a type II fluid in the context of the Rastall theory of gravity. For a linear equation of state for the fluid profiles, the conditions under which the dynamical evolution of the collapse can give rise to the formation of a naked singularity are examined. It is shown that depending on the model parameters, strong curvature, naked singularities would arise as exact solutions to the Rastall's field equations. The allowed values of these parameters satisfy certain conditions on the physical reliability, nakedness, and the curvature strength of the singularity. It turns out that Rastall gravity, in comparison to general relativity, provides a wider class of physically reasonable spacetimes that admit both locally and globally naked singularities.  相似文献   

4.
5.
In 1961, Brans and Dicke [1] provided an interesting alternative to general relativity based on Mach’s principle. To understand the reasons leading to their field equations, we first consider homogeneous and isotropic cosmological models in the Brans-Dicke theory. Accordingly we start with the Robertson-Walker line element and the energy tensor of a perfect fluid. The scalar field φ is now a function of the cosmic time only. Then we consider spatially homogeneous and anisotropic Bianchi type-I-cosmological solutions of modified Brans-Dicke theory containing barotropic fluid. These have been obtained by imposing a condition on the cosmological parameter Λ(φ). Again we try to focus the meaning of this cosmological term and to relate it to the time coordinate which gives us a collapse singularity or the initial singularity. On the other hand, our solution is a generalization of the solution found by Singh and Singh [2]. As far as we are aware, such solution has not been given earlier.  相似文献   

6.
We describe the spherically symmetric steady-state accretion of perfect fluid in the Reissner-Nordström metric. We present analytic solutions for accretion of a fluid with linear equations of state and of the Chaplygin gas. We also show that under reasonable physical conditions, there is no steady-state accretion of a perfect fluid onto a Reissner-Nordström naked singularity. Instead, a static atmosphere of fluid is formed. We discuss a possibility of violation of the third law of black hole thermodynamics for a phantom fluid accretion.  相似文献   

7.
We present perfect fluid Friedmann–Robertson–Walker quantum cosmological models in the presence of negative cosmological constant. In this work the Schutz’s variational formalism is applied for radiation, dust, cosmic string, and domain wall dominated Universes with positive, negative, and zero constant spatial curvature. In this approach the notion of time can be recovered. These give rise to Wheeler–DeWitt equations for the scale factor. We find their eigenvalues and eigenfunctions by using Spectral Method. After that, we use the eigenfunctions in order to construct wave packets for each case and evaluate the time-dependent expectation value of the scale factors, which are found to oscillate between finite maximum and minimum values. Since the expectation values of the scale factors never tends to the singular point, we have an initial indication that these models may not have singularities at the quantum level.  相似文献   

8.
9.
We consider a self-consistent system of Bianchi Type VI0 cosmology and binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be one obeying the usual equation of state p=??? with ????[0,1]. The dark energy is considered to be either the quintessence or Chaplygin gas. Exact solutions to the corresponding Einstein??s field equations are obtained as a quadrature. Models with power-law and exponential expansion have discussed in detail.  相似文献   

10.
The present paper deals with quantization of perfect fluid anisotropic cosmological models. Bianchi type V and IX models are discussed following Schutz’s method of expressing fluid velocities in terms of six potentials. The wave functions are found for several examples of equations of state. In one case a complete wave packet could be formed analytically. The initial singularity of a zero proper volume can be avoided in this case, but it is plagued by the usual problem of non-unitarity of anisotropic quantum cosmological models. It is seen that a particular operator ordering alleviates this problem.  相似文献   

11.
We develop a technique for the reconstruction of the potential for a scalar field in cosmological models based on induced gravity. The potentials reproducing cosmological evolutions driven by barotropic perfect fluids, a cosmological constant, a Chaplygin gas and a modified Chaplygin gas are constructed explicitly.  相似文献   

12.
We present Bianchi type-I cosmological models in the presence of generalized Chaplygin gas and perfect fluid for early and late time epochs. Exact solutions of Einstein’s field equations for this model are obtained. The general solutions of gravitational field equations are expressed in an exact parametric form, with average scale factor as parameter. In the limiting cases of small and large values of the average scale factor, the solutions of the field equations are expressed in exact analytic forms. Moreover, this model predicts that the expansion of Universe is accelerating for the late times. The physical and geometrical properties of the corresponding cosmological models are discussed.  相似文献   

13.
Much of the published work regarding the Isotropic Singularity is performed under the assumption that the matter source for the cosmological model is a barotropic perfect fluid, or even a perfect fluid with a -law equation of state. There are, however, some general properties of cosmological models which admit an Isotropic Singularity, irrespective of the matter source. In particular, we show that the Isotropic Singularity is a point-like singularity and that vacuum space-times cannot admit an Isotropic Singularity. The relationships between the Isotropic Singularity, and the energy conditions, and the Hubble parameter is explored. A review of work by the authors, regarding the Isotropic Singularity, is presented.  相似文献   

14.
We have studied the Bianchi type-V cosmological models with binary mixture of perfect fluid and dark energy in five dimensions. The perfect fluid is obeying the equation of state p=γρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or the Chaplygin gas. The exact solutions of the Einstein’s field equations are obtained in quadrature form.  相似文献   

15.
Cosmological singularity and asymptotic behavior of scale factor of generalized cosmological models are analyzed in respect of their structural stability. It is shown, that cosmological singularity is structurally unstable for the majority of models with barotropic perfect fluid with strong energy condition. Inclusion of Λ-term extends the set of structurally stable cosmological models.  相似文献   

16.
In this paper, we report on results in the study of spatially homogeneous cosmological models with elastic matter. We show that the behavior of elastic solutions is fundamentally different from that of perfect fluid solutions already in the case of locally rotationally symmetric Bianchi type I models; this is true even when the elastic material resembles a perfect fluid very closely. In particular, the approach to the initial singularity is characterized by an intricate oscillatory behavior of the scale factors, while the future asymptotic behavior is described by isotropization rates that differ significantly from those of perfect fluids.  相似文献   

17.
Linearized solution of Datta in a non-symmetric and isentropic motion of a perfect fluid is studied by dealing with a Cauchy problem in co-moving coordinates in the framework of general relativity. The problem of singularities is discussed from the standpoint of a local observer both for rotating and non-rotating fluids. It is shown that, whatever the distribution of matter, a singularity which occurred in the past in both the rotating and non-rotating parts of the universe must occur again later after some finite proper time, if the universe is closed. A modification is incorporated in Penrose’s theorem by explicitly exhibiting that the universe defined by Penrose can possess a Cauchy hypersurface.  相似文献   

18.
19.
We choose a modified Chaplygin Gas Dark energy model for considering some its cosmological behaviors. In this regards, we study different Rip singularity scenarios and bouncing model of the universe in context of this model. We show that by using suitable parameters can explain some cosmological aspects of the model.  相似文献   

20.
Does three-dimensional incompressible Euler flow with smooth initial conditions develop a singularity with infinite vorticity after a finite time? This blowup problem is still open. After briefly reviewing what is known and pointing out some of the difficulties, we propose to tackle this issue for the class of flows having analytic initial data for which hypothetical real singularities are preceded by singularities at complex locations. We present some results concerning the nature of complex space singularities in two dimensions and propose a new strategy for the numerical investigation of blowup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号