首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbapenem‐resistant Gram‐negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer‐membrane or are excluded by efflux mechanisms. Here, we report a cationic block β‐peptide (PAS8‐b‐PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8‐b‐PDM12 does not only compromise the integrity of the bacterial outer‐membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8‐b‐PDM12 sensitizes carbapenem‐ and colistin‐resistant GNB to multiple antibiotics in vitro and in vivo. The β‐peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α‐peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.  相似文献   

2.
A gold‐catalyzed desilylative cyclization was developed for facile synthesis of bridged tetracyclic indolenines, a common motif in many natural indole alkaloids. An antimicrobial screen of the cyclization products identified one compound which selectively potentiates β‐lactam antibiotics in methicillin‐resistant S. aureus (MRSA), and re‐sensitizes a variety of MRSA strains to β‐lactams.  相似文献   

3.
A cunning and dangerous plan foiled! An enzyme‐specific molecular construct exploits the overexpression of β‐lactamase in several drug‐resistant bacteria. Specific photodynamic toxicity was detected towards β‐lactam‐resistant methicillin‐resistant Staphylococcus aureus (MRSA), whereby the usual mechanism for antibiotic resistance (cleavage of the β‐lactam ring) releases the phototoxic component from the prodrug (see picture; Q=quencher).

  相似文献   


4.
β‐Lactam antibiotics are generally perceived as one of the greatest inventions of the 20th century, and these small molecular compounds have saved millions of lives. However, upon clinical application of antibiotics, the β‐lactamase secreted by pathogenic bacteria can lead to the gradual development of drug resistance. β‐Lactamase is a hydrolase that can efficiently hydrolyze and destroy β‐lactam antibiotics. It develops and spreads rapidly in pathogens, and the drug‐resistant bacteria pose a severe threat to human health and development. As a result, detecting and inhibiting the activities of β‐lactamase are of great value for the rational use of antibiotics and the treatment of infectious diseases. At present, many specific detection methods and inhibitors of β‐lactamase have been developed and applied in clinical practice. In this Minireview, we describe the resistance mechanism of bacteria producing β‐lactamase and further summarize the fluorogenic probes, inhibitors of β‐lactamase, and their applications in the treatment of infectious diseases. It may be valuable to design fluorogenic probes with improved selectivity, sensitivity, and effectiveness to further identify the inhibitors for β‐lactamases and eventually overcome bacterial resistance.  相似文献   

5.
The increase of bacterial resistance demands rapid and accurate diagnosis of bacterial infections. Biosurface‐induced supramolecular assembly for diagnosis and therapy has received little attention in detecting bacterial infections. Herein we present a dual fluorescent‐nuclear probe based on self‐assembly of vancomycin (Van) on Gram‐positive bacteria for imaging bacterial infection. A Van‐ and rhodamine‐modified peptide derivative (Rho‐FF‐Van), as the imaging agent, binds to the terminal peptide of the methicillin‐resistant staphylococcus aureus (MRSA) and self‐assembles to form nanoaggregates on the surface of MRSA . In an in vivo myositis model, Rho‐FF‐Van results in a significant increased fluorescence signal at the MRSA infected site. Radiolabeled with iodine‐125, Rho‐FF‐Van shows strong radioactive signal in the MRSA ‐infected lungs in a murine model. This novel dual fluorescent and nuclear probe promises a new way for in vivo imaging of bacterial infections.  相似文献   

6.
Bacterial resistance to antibiotics poses a great clinical challenge in fighting serious infectious diseases due to complicated resistant mechanisms and time‐consuming testing methods. Chemical reaction‐directed covalent labeling of resistance‐associated bacterial proteins in the context of a complicated environment offers great opportunity for the in‐depth understanding of the biological basis conferring drug resistance, and for the development of effective diagnostic approaches. In the present study, three fluorogenic reagents LRBL1–3 for resistant bacteria labeling have been designed and prepared on the basis of fluorescence resonance energy transfer (FRET). The hydrolyzed probes could act as reactive electrophiles to attach the enzyme, β‐lactamase, and thus facilitated the covalent labeling of drug resistant bacterial strains. SDS electrophoresis and MALDI‐TOF mass spectrometry characterization confirmed that these probes were sensitive and specific to β‐lactamase and could therefore serve for covalent and localized fluorescence labeling of the enzyme structure. Moreover, this β‐lactamase‐induced covalent labeling provides quantitative analysis of the resistant bacterial population (down to 5 %) by high resolution flow cytometry, and allows single‐cell detection and direct observation of bacterial enzyme activity in resistant pathogenic species. This approach offers great promise for clinical investigations and microbiological research.  相似文献   

7.
Antibiotics play important roles in infection treatment and prevention. However, the effectiveness of antibiotics is now threatened by the prevalence of drug‐resistant bacteria. Furthermore, antibiotic abuse and residues in the environment cause serious health issues. In this study, a stimuli‐responsive imprinted hydrogel was fabricated by using β‐lactamase produced by bacteria for deactivating antibiotics as the template molecule. The imprinted hydrogel could initially trap β‐lactamase excreted by drug‐resistant bacteria, thus making bacteria sensitive to antibiotics. After the bactericidal treatment, the “imprinted sites” on the hydrogel could be reversibly abolished with a temperature stimulus, which resulted in the reactivation of β‐lactamase to degrade antibiotic residues. We also present an example of the use of this antibacterial design to treat wound infection.  相似文献   

8.
In an antibiotic lead discovery program, the known strain Streptomyces armeniacus DSM19369 has been found to produce three new natural products when cultivated on a malt‐containing medium. The challenging structural elucidation of the isolated compounds was achieved by using three independent methods, that is, chemical degradation followed by NMR spectroscopy, a computer‐assisted structure prediction algorithm, and X‐ray crystallography. The compounds, named armeniaspirol A–C ( 2 – 4 ), exhibit a compact, hitherto unprecedented chlorinated spiro[4.4]non‐8‐ene scaffold. Labeling experiments with [1‐13C] acetate, [1,2‐13C2] acetate, and [U‐13C] proline suggest a biosynthesis through a rare two‐chain mechanism. Armeniaspirols displayed moderate to high in vitro activities against Gram‐positive pathogens such as methicillin‐resistant S. aureus (MRSA) or vancomycin resistant E. faecium (VRE). As analogue 2 was active in vivo in an MRSA sepsis model, and showed no development of resistance in a serial passaging experiment, it represents a new antibiotic lead structure.  相似文献   

9.
The surge in drug‐resistant bacterial infections threatens to overburden healthcare systems worldwide. Bacterial cell walls are essential to bacteria, thus making them unique targets for the development of antibiotics. We describe a cellular reporter to directly monitor the phenotypic switch in drug‐resistant bacteria with temporal resolution. Vancomycin‐resistant enterococci (VRE) escape the bactericidal action of vancomycin by chemically modifying their cell‐wall precursors. A synthetic cell‐wall analogue was developed to hijack the biosynthetic rewiring of drug‐resistant cells in response to antibiotics. Our study provides the first in vivo VanX reporter agent that responds to cell‐wall alteration in drug‐resistant bacteria. Cellular reporters that reveal mechanisms related to antibiotic resistance can potentially have a significant impact on the fundamental understanding of cellular adaption to antibiotics.  相似文献   

10.
11.
Resistance to glycopeptide antibiotics, the drugs of choice for life‐threatening bacterial infections, is on the rise. In order to counter the threat of glycopeptide‐resistant bacteria, we report development of a new class of semi‐synthetic glycopeptide antibiotics, which not only target the bacterial membrane but also display enhanced inhibition of cell‐wall biosynthesis through increased binding affinity to their target peptides. The combined effect of these two mechanisms resulted in improved in vitro activity of two to three orders of magnitude over vancomycin and no propensity to trigger drug resistance in bacteria. In murine model of kidney infection, the optimized compound was able to bring bacterial burden down by about 6 logs at 12 mg kg?1 with no observed toxicity. The results furnished in this report emphasize the potential of this class of compounds as future antibiotics for drug‐resistant Gram‐positive infections.  相似文献   

12.
In the past 20 years, peptide‐based antibiotics, such as vancomycin, teicoplanin, and daptomycin, have often been considered as second‐line antibiotics. However, in recent years, an increasing number of reports on vancomycin resistance in pathogens appeared, which forces researchers to find novel lead structures for potent new antibiotics. Herein, we report the total synthesis of a defined endo‐type B PPAP library and their antibiotic activity against multiresistant S. aureus and various vancomycin‐resistant Enterococci . Four new compounds that combine high activities and low cytotoxicity were identified, indicating that the PPAP core might become a new non‐peptide‐based lead structure in antibiotic research.  相似文献   

13.
Muropeptides are a group of bacterial natural products generated from the cell wall in the course of its turnover. These compounds are cell‐wall recycling intermediates and are also involved in signaling within the bacterium. However, the identity of these signaling molecules remains elusive. The identification and characterization of 20 muropeptides from Pseudomonas aeruginosa is described. The least abundant of these metabolites is present at 100 and the most abundant at 55,000 molecules per bacterium. Analysis of these muropeptides under conditions of induction of resistance to a β‐lactam antibiotic identified two signaling muropeptides (N‐acetylglucosamine‐1,6‐anhydro‐N‐acetylmuramyl pentapeptide and 1,6‐anhydro‐N‐acetylmuramyl pentapeptide). Authentic synthetic samples of these metabolites were shown to activate expression of β‐lactamase in the absence of any β‐lactam antibiotic, thus indicating that they serve as chemical signals in this complex biochemical pathway.  相似文献   

14.
Conventional antibiotics are ineffective against non‐replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1 , that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC=0.2–12.5 μM), as well as the effective killing of MRSA persister cells in non‐biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non‐biofilm persisters alongside 14 . HP 13 displayed potent antibacterial activity against slow‐growing M. tuberculosis (MIC=3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non‐toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections.  相似文献   

15.
Conventional antibiotics are ineffective against non‐replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1 , that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC=0.2–12.5 μM), as well as the effective killing of MRSA persister cells in non‐biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non‐biofilm persisters alongside 14 . HP 13 displayed potent antibacterial activity against slow‐growing M. tuberculosis (MIC=3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non‐toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections.  相似文献   

16.
Modification of the Lipid A phosphates by positively charged appendages is a part of the survival strategy of numerous opportunistic Gram‐negative bacteria. The phosphate groups of the cystic fibrosis adapted Burkholderia Lipid A are abundantly esterified by 4‐amino‐4‐deoxy‐β‐L ‐arabinose (β‐L ‐Ara4N), which imposes resistance to antibiotic treatment and contributes to bacterial virulence. To establish structural features accounting for the unique pro‐inflammatory activity of Burkholderia LPS we have synthesised Lipid A substituted by β‐L ‐Ara4N at the anomeric phosphate and its Ara4N‐free counterpart. The double glycosyl phosphodiester was assembled by triazolyl‐tris‐(pyrrolidinyl)phosphonium‐assisted coupling of the β‐L ‐Ara4N H‐phosphonate to α‐lactol of β(1→6) diglucosamine, pentaacylated with (R)‐(3)‐acyloxyacyl‐ and Alloc‐protected (R)‐(3)‐hydroxyacyl residues. The intermediate 1,1′‐glycosyl‐H‐phosphonate diester was oxidised in anhydrous conditions to provide, after total deprotection, β‐L ‐Ara4N‐substituted Burkholderia Lipid A. The β‐L ‐Ara4N modification significantly enhanced the pro‐inflammatory innate immune signaling of otherwise non‐endotoxic Burkholderia Lipid A.  相似文献   

17.
Gram‐negative pathogens represent a significant global health threat, while the emergency and widespread of drug resistance make the situation even worse. As “privileged building blocks,” 4‐quinolones including fluoroquinolones are mainstays of chemotherapy against various bacterial infections. However, as other antibiotics, the resistance of Gram‐negative bacteria to 4‐quinolones develops rapidly and spreads widely throughout the world. To overcome the resistance and improve the potency, a number of 4‐quinolone derivatives were designed, synthesized, and screened for their in vitro and in vivo activities against representative Gram‐negative pathogens. This review aims to summarize the recent advances made towards the discovery of 4‐quinolone derivatives as anti‐Gram‐negative agents as well as their structure–activity relationship. The enriched structure–activity relationship paves the way to the further rational development of 4‐quinolones with excellent potency against both drug‐susceptible and drug‐resistant Gram‐negative pathogens.  相似文献   

18.
Dual photo‐ and pH‐responsive polymeric vesicles are constructed from a host–guest complex between a water‐soluble pillar[6]arene and an azobenzene ended functionalized poly(ε‐caprolactone). Reversible morphological transitions between vesicles and solid aggregates are achieved upon repeated UV stimulus and pH stimulus. Moreover, the polymeric vesicles present excellent cytocompatibility toward HepG2 cells and can be further applied for controlled release of a hydrophilic model drug, DOX?HCl. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2477–2482  相似文献   

19.
Extensive use and misuse of antibiotics over the past 50 years has contributed to the emergence and spread of antibiotic‐resistant bacterial strains, rendering them as a global health concern. To address this issue, a dynamic in vitro hollow‐fiber system, which mimics the in vivo environment more closely than the static model, was used to study the emergence of bacterial resistance of Escherichia coli against fosfomycin (FOS). To aid in this endeavor we developed and validated a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) assay for quantitative analysis of FOS in lysogeny broth. FOS was resolved on a Kinetex HILIC (2.1 × 50 mm, 2.6 μm) column with 2 mm ammonium acetate (pH 4.76) and acetonitrile as mobile phase within 3 min. Multiple reaction monitoring was used to acquire data on a triple quadrupole mass spectrometer. The assay was linear from 1 to 1000 μg/mL. Inter‐ and intra‐assay precision and accuracy were <15% and between ±85 and 115% respectively. No significant matrix effect was observed when corrected with the internal standard. FOS was stable for up to 24 h at room temperature, up to three freeze–thaw cycles and up to 24 h when stored at 4°C in the autosampler. In vitro experimental data were similar to the simulated plasma pharmacokinetic data, further confirming the appropriateness of the experimental design to quantitate antibiotics and study occurrence of antimicrobial resistance in real time. The validated LC‐MS/MS assays for quantitative determination of FOS in lysogeny broth will help antimicrobial drug resistance studies.  相似文献   

20.
The spread of antibiotic resistance in pathogenic bacteria has become one of the major concerns to public health. Improved monitoring of drug resistance is of high importance for infectious disease control. One of the major mechanisms for bacteria to overcome treatment of antibiotics is the production of β‐lactamases, which are enzymes that hydrolyze the β‐lactam ring of the antibiotic. In this study, we have developed a self‐immobilizing and fluorogenic probe for the detection of β‐lactamase activity. This fluorogenic reagent, upon activation by β‐lactamases, turns on a fluorescence signal and, more importantly, generates a covalent linkage to the target enzymes or the nearby proteins. The covalent labeling of enzymes was confirmed by SDS‐PAGE analysis and MALDI‐TOF mass spectrometry. The utility of this structurally simple probe was further confirmed by the fluorescent labeling of a range of β‐lactamase‐expressing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号