首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
One of challenges existing in fiber‐based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two‐dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy‐related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well‐aligned multi‐walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2‐rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid‐state, flexible, asymmetric supercapacitors. This fiber‐based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density.  相似文献   

2.
One of challenges existing in fiber‐based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two‐dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy‐related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well‐aligned multi‐walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2‐rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid‐state, flexible, asymmetric supercapacitors. This fiber‐based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density.  相似文献   

3.
Two-dimensional (2D) molybdenum disulfide (MoS2) holds great promise in electronic and optoelectronic applications owing to its unique structure and intriguing properties. The intrinsic defects such as sulfur vacancies (SVs) of MoS2 nanosheets are found to be detrimental to the device efficiency. To mitigate this problem, functionalization of 2D MoS2 using thiols has emerged as one of the key strategies for engineering defects. Herein, we demonstrate an approach to controllably engineer the SVs of chemically exfoliated MoS2 nanosheets using a series of substituted thiophenols in solution. The degree of functionalization can be tuned by varying the electron-withdrawing strength of substituents in thiophenols. We find that the intensity of 2LA(M) peak normalized to A1g peak strongly correlates to the degree of functionalization. Our results provide a spectroscopic indicator to monitor and quantify the defect engineering process. This method of MoS2 defect functionalization in solution also benefits the further exploration of defect-free MoS2 for a wide range of applications.  相似文献   

4.
Mimicking the extracellular matrix to have a similar nanofibrous structure regarding electrical conductivity and mechanical properties would be highly beneficial for cardiac tissue engineering. The molybdenum disulfide, MoS2, and reduced graphene oxide, rGO, nanosheets are two‐dimensional nanomaterials which can be considered as great candidates for enhancing the electrical and mechanical properties of biological scaffolds for cardiac tissue engineering applications. In this study, MoS2 and rGO nanosheets were synthesized and incorporated into silk fibroin nanofibers, SF, via electrospinning method. Then, the human iPSCs transfected with TBX‐18 gene, TBX18‐hiPSCs, were seeded on these scaffolds for in vitro studies. The MoS2 and rGO nanosheets were studied by Raman spectroscopy. After incorporation of the nanosheets into SF nanofibers, the associated characterizations were carried out including scanning electron microscopy, transmission electron microscopy, water contact angle, and mechanical test. Furthermore, SF, SF/MoS2, and SF/rGO scaffolds were used for in vitro studies. Herein, the scaffolds exhibited acceptable biocompatibility and considerable attachment to TBX18‐hiPSCs confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyl tetrazolium bromide, MTT, assay, and scanning electron microscopy. Also, the real‐time PCR and immunostaining studies confirmed the maturity and upregulation of cardiac functional genes, including GATA‐4, c‐TnT, and α‐MHC in the SF/MoS2 and SF/rGO scaffolds compared with the bare SF one. Therefore, the reinforcement of these SF‐based scaffolds with MoS2 and rGO endues them as a suitable candidate for cardiac tissue engineering.  相似文献   

5.
《化学:亚洲杂志》2017,12(10):1052-1056
The β‐cyclodextrin‐assisted aqueous‐exfoliation method was used to prepare transition‐metal dichalcogenide (TMD) nanosheets, in a cheap, highly efficient, scalable and environmentally friendly manner. As study cases, MoS2 and ReS2 nanoflakes were prepared according to this method. Particularly, the effective exfoliation of ReS2 crystals in an aqueous environment was observed for the first time. Moreover, exfoliated nanomaterials can be readily utilized in hydrogen evolution reactions (HERs) as noble‐metal‐free catalysts. This work provides new opportunities for highly efficient exfoliation of TMDs and other 2D nanomaterials into few‐layer nanosheets in aqueous media. Their production process showed high biocompatibility, broad applicability and excellent sustainability.  相似文献   

6.
Two‐dimensional layered transition metal dichalcogenides (TMDs) have attracted great interest owing to their unique properties and a wide array of potential applications. However, due to their inert nature, pristine TMDs are very challenging to functionalize. We demonstrate a general route to functionalize exfoliated 2H‐MoS2 with cysteine. Critically, MoS2 was found to be facilitating the oxidation of the thiol cysteine to the disulfide cystine during functionalization. The resulting cystine was physisorbed on MoS2 rather than coordinated as a thiol (cysteine) filling S‐vacancies in the 2H‐MoS2 surface, as originally conceived. These observations were found to be true for other organic thiols and indeed other TMDs. Our findings suggest that functionalization of two‐dimensional MoS2 using organic thiols may not yield covalently or datively tethered functionalities, rather, in this instance, they yield physisorbed disulfides that are easily removed.  相似文献   

7.
In the present work, a facile and environmental method was developed to fabricate the novel functionalized MoS2 hybrid. Firstly, MoS2 nanosheets were coated with polydopamine (PDA) through the self‐polymerization of dopamine (MoS2‐PDA) in a buffer solution. Then the decoration of Ni(OH)2 on the MoS2‐PDA was synthesized because of the strong affinity of Ni2+ with hydroxyl groups in PDA. Finally, the as‐synthesized MoS2‐PDA@Ni(OH)2 was introduced into poly(lactic acid) (PLA) matrix to explore flame retardancy, thermal stability, and crystalline property of the composites. As confirmed by X‐ray diffraction (XRD), Fourier‐transform infrared spectrometer (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), the MoS2 nanosheets were dually modified with PDA and Ni(OH)2 without destroying the original structures. The thermal degradation of PLA with MoS2‐PDA@Ni(OH)2 generated a notably higher yield of char. Moreover, the crystallization rate of composites is higher than neat PLA. The cone calorimeter test revealed that the introduction of 3% MoS2‐PDA@Ni(OH)2 resulted in lower Peak Heat Release Rate (PHRR) (decreased by 21.7%). Thus, the research provided an innovative functionalization method for manufacturing PLA composites with high performances.  相似文献   

8.
《化学:亚洲杂志》2017,12(22):2889-2893
Bulk molybdenum disulfide (MoS2) itself is virtually insoluble in common organic solvents because of the tight stacks of multiple MoS2 nanosheets. Here we report that V‐shaped polyaromatic compounds with non‐ionic side chains can efficiently exfoliate and disperse the inorganic nanosheets. Simple grinding and sonication (less than total 1 h) of MoS2 powder with the V‐shaped compounds gave rise to large MoS2 nanosheets highly dispersed in NMP through efficient host‐guest S–π interactions. DLS and AFM analyses revealed that the lateral sizes (ca. 150–270 nm) and thicknesses (ca. 2–8 nm) of the products depend on the identity of the non‐ionic side chains on the V‐shaped dispersant.  相似文献   

9.
Nanomaterials based on zirconium tungstate (ZrW2O8) exhibit numerous outstanding properties that make them ideal candidates for the development of high‐performance composites. Low coefficient of thermal expansion for advanced materials is a promising direction in the field of insulating nanocomposites. However, the agglomeration of zirconium tungstate (ZrW2O8)‐based nanomaterials in the polymer matrix is a limiting factor in their successful applications, and studies on surface functionalization ZrW2O8 for advanced nanocomposites are very limited. In this work, ZrW2O8 nano‐rods were synthesized using a hydrothermal method and subsequently functionalized in a solvent‐free aqueous medium using dopamine. Both pristine and functionalized nano‐rods were thoroughly characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, X‐ray diffraction, Scanning Electron Microscopy (SEM), and transmission electron microscopy techniques, which confirmed the successful functionalization of the nanomaterials. Polymer nanocomposites were also prepared using epoxy resin as a model matrix. Polymer nanocomposites with functionalized ZrW2O8 nano‐rods exhibited low coefficient of thermal expansion and enhanced tensile properties. The improved properties of the nanocomposites render them suitable for electronic applications. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Metal–organic frameworks (MOFs) and MOF‐derived nanomaterials have recently attracted great interest as highly efficient, non‐noble‐metal catalysts. In particular, two‐dimensional MOF nanosheet materials possess the advantages of both 2D layered nanomaterials and MOFs and are considered to be promising nanomaterials. Herein, we report a facile and scalable in situ hydrothermal synthesis of Co–hypoxanthine (HPA) MOF nanosheets, which were then directly carbonized to prepare uniform Co@N‐Carbon nanosheets for efficient bifunctional electrocatalytic hydrogen‐evolution reactions (HERs) and oxygen‐evolution reactions (OERs). The Co embedded in N‐doped carbon shows excellent and stable catalytic performance for bifunctional electrocatalytic OERs and HERs. For OERs, the overpotential of Co@N‐Carbon at 10 mA cm?2 was 400 mV (vs. reversible hydrogen electrode, RHE). The current density of Co@N‐Carbon reached 100 mA cm?2 at an overpotential of 560 mV, which showed much better performance than RuO2; the largest current density of RuO2 that could be reached was only 44 mA cm?2. The Tafel slope of Co@N‐Carbon was 61 mV dec?1, which is comparable to that of commercial RuO2 (58 mV dec?1). The excellent electrocatalytic properties can be attributed to the nanosheet structure and well‐dispersed carbon‐encapsulated Co, CoN nanoparticles, and N‐dopant sites, which provided high conductivity and a large number of accessible active sites. The results highlight the great potential of utilizing MOF nanosheet materials as promising templates for the preparation of 2D Co@N‐Carbon materials for electrocatalysis and will pave the way to the development of more efficient 2D nanomaterials for various catalytic applications.  相似文献   

11.
《Electroanalysis》2017,29(11):2565-2571
MoS2 nanoflakes were prepared by exfoliating commercial MoS2 powders with the assistance of ultrasound and graphene foam was synthesized by chemical vapor deposition using nickel foam as the template. MoS2‐graphene hybrid nanosheets were developed through the combination of MoS2 nanoflakes and graphene nanosheets by ultrasonic dispersion. The hybrid nanosheets were sprayed onto the ITO coated glass, which acts as an electrode for the simultaneously electrochemical determination of levodopa and uric acid. The MoS2‐graphene hybrid nanosheets were characterized by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. The results show that the hybrid nanosheets are composed of MoS2 and graphene with a sheet‐like morphology. The sensitivity of the electrode for levodopa and uric acid is 0.36 μA μM−1 and 0.39 μA μM−1, respectively. The electrode also shows low limit of detection, good selectivity, reproducibility and stability. And it is potential for use in clinical research.  相似文献   

12.
Layered two‐dimensional (2D) inorganic transition‐metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2. We found that the reaction of liquid‐exfoliated 2D MoS2, with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2–M(OAc)2 materials. Importantly, this method furnished the 2H‐polytype of MoS2 which is a semiconductor. X‐ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT–IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H‐MoS2 allows for its dispersion/processing in more conventional laboratory solvents.  相似文献   

13.
Two‐dimensional (2D) transition‐metal dichalcogenides (TMDs) have drawn much attention due to their unique physical and chemical properties. Using TMDs as templates for the generation of 2D sandwich‐like materials with remarkable properties still remains a great challenge due to their poor solvent processability. Herein, MoS2‐coupled sandwich‐like conjugated microporous polymers (M‐CMPs) with high specific surface area were successfully developed by using functionalized MoS2 nanosheets as template. As‐prepared M‐CMPs were further used as precursors for preparation of MoS2‐embedded nitrogen‐doped porous carbon nanosheets, which were revealed as novel electrocatalysts for oxygen reduction reaction with mainly four‐electron transfer mechanism and ultralow half‐wave potential in comparison with commercial Pt/C catalyst. Our strategy to core–shelled sandwich‐like hybrids paves a way for a new class of 2D hybrids for energy conversion and storage.  相似文献   

14.
High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

15.
Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N‐doped carbon shells (denoted as C@MoS2 nanoboxes). The N‐doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium‐ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g?1, excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.  相似文献   

16.
Two‐dimensional (2D) nanomaterials are one of the most promising types of candidates for energy‐storage applications due to confined thicknesses and high surface areas, which would play an essential role in enhanced reaction kinetics. Herein, a universal process that can be extended for scale up is developed to synthesise ultrathin cobalt‐/nickel‐based hydroxides and oxides. The sodium and lithium storage capabilities of Co3O4 nanosheets are evaluated in detail. For sodium storage, the Co3O4 nanosheets exhibit excellent rate capability (e.g., 179 mA h g?1 at 7.0 A g?1 and 150 mA h g?1 at 10.0 A g?1) and promising cycling performance (404 mA h g?1 after 100 cycles at 0.1 A g?1). Meanwhile, very impressive lithium storage performance is also achieved, which is maintained at 1029 mA h g?1 after 100 cycles at 0.2 A g?1. NiO and NiCo2O4 nanosheets are also successfully prepared through the same synthetic approach, and both deliver very encouraging lithium storage performances. In addition to rechargeable batteries, 2D cobalt‐/nickel‐based hydroxides and oxides are also anticipated to have great potential applications in supercapacitors, electrocatalysis and other energy‐storage‐/‐conversion‐related fields.  相似文献   

17.
The functionalization of MoS2 is of paramount importance for tailoring its properties towards optoelectronic applications and unlocking its full potential. Zinc phthalocyanine (ZnPc) carrying an 1,2‐dithiolane oxide linker was used to functionalize MoS2 at defect sites located at the edges. The structure of ZnPc‐MoS2 was fully assessed by complementary spectroscopic, thermal, and microscopy imaging techniques. An energy‐level diagram visualizing different photochemical events in ZnPc‐MoS2 was established and revealed a bidirectional electron transfer leading to a charge separated state ZnPc. + ‐MoS2.?. Markedly, evidence of the charge transfer in the hybrid material was demonstrated using fluorescence spectroelectrochemistry. Systematic studies performed by femtosecond transient absorption revealed the involvement of excitons generated in MoS2 in promoting the charge transfer, while the transfer was also possible when ZnPc was excited, signifying their potential in light‐energy‐harvesting devices.  相似文献   

18.
Weak van der Waals interactions between interlayers of two‐dimensional layered materials result in disabled across‐interlayer electron transfer and poor layered structural stability, seriously deteriorating their performance in energy applications. Herein, we propose a novel covalent assembly strategy for MoS2 nanosheets to realize unique MoS2/SnS hollow superassemblies (HSs) by using SnS nanodots as covalent linkages. The covalent assembly based on all‐inorganic and carbon‐free concept enables effective across‐interlayer electron transfer, facilitated ion diffusion kinetics, and outstanding mechanical stability, which are evidenced by experimental characterization, DFT calculations, and mechanical simulations. Consequently, the MoS2/SnS HSs exhibit superb rate performance and long cycling stability in lithium‐ion batteries, representing the best comprehensive performance in carbon‐free MoS2‐based anodes to date. Moreover, the MoS2/SnS HSs also show excellent sodium storage performance in sodium‐ion batteries.  相似文献   

19.
Molybdenum disulfide (MoS2) is a promising candidate for electronic and optoelectronic applications. However, its application in light harvesting has been limited in part due to crystal defects, often related to small crystallite sizes, which diminish charge separation and transfer. Here we demonstrate a surface‐engineering strategy for 2D MoS2 to improve its photoelectrochemical properties. Chemically exfoliated large‐area MoS2 thin films were interfaced with eight molecules from three porphyrin families: zinc(II)‐, gallium(III)‐, iron(III)‐centered, and metal‐free protoporphyrin IX (ZnPP, GaPP, FePP, H2PP); metal‐free and zinc(II) tetra‐(N‐methyl‐4‐pyridyl)porphyrin (H2T4, ZnT4); and metal‐free and zinc(II) tetraphenylporphyrin (H2TPP, ZnTPP). We found that the photocurrents from MoS2 films under visible‐light illumination are strongly dependent on the interfacial molecules and that the photocurrent enhancement is closely correlated with the highest occupied molecular orbital (HOMO) levels of the porphyrins, which suppress the recombination of electron–hole pairs in the photoexcited MoS2 films. A maximum tenfold increase was observed for MoS2 functionalized with ZnPP compared with pristine MoS2 films, whereas ZnT4‐functionalized MoS2 demonstrated small increases in photocurrent. The application of bias voltage on MoS2 films can further promote photocurrent enhancements and control current directions. Our results suggest a facile route to render 2D MoS2 films useful for potential high‐performance light‐harvesting applications.  相似文献   

20.
Sodium‐ion energy storage, including sodium‐ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium‐ion energy storage. It is an intriguing prospect, especially for large‐scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d‐spacing, a contribution of the graphene matrix, and the unique properties of the MoS2/G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2/G exhibits a stable capacity of approximately 350 mAh g?1 over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g?1 over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1–2.5 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号