首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Direct numerical simulations of a turbulent Couette-Poiseuille flow with zero-mean-shear at the moving wall (SL-flow) is performed to examine flow features compared to those for a turbulent pure Poiseuille flow (P-flow). Profiles of the streamwise mean velocity, indicator function and ratio of production to dissipation show that the logarithmic region is significantly elongated for the SL-flow compared to that for the P-flow at a similar Reynolds number. In addition, the magnitudes of the Reynolds stresses are found to be larger in both inner and outer layers for the SL-flow than those for the P-flow. The spanwise spectra of the production term in the turbulent kinetic energy equation are examined to provide a structural basis for explaining the statistical behaviors. In addition, because the growth of the energy-containing motions extends to the outer layer further for the SL-flow due to the presence of a positive mean shear throughout the entire wall layer, the self-similar behavior of the energy balance between the production and transport terms with respect to the self-similar wavenumber is found far from the wall. We also find the increase in the number of uniform momentum zones in the SL-flow, revealing the hierarchical distribution of the energy-containing eddies which are composed of multiple uniform momentum zones. These coherent motions lead to the elongation of the logarithmic region for the SL-flow. Finally, investigation of the turbulent energy transfer process in a spectral domain for the SL-flow demonstrates importance of outer layer very-long structures, and these structures attribute to the energy transport process in an entire flow field.  相似文献   

2.
A direct numerical simulation dataset of a fully developed turbulent Couette-Poiseuille flow is analyzed to investigate the spatial organization of streamwise velocity-fluctuating u-structures on large and very large scales. Instantaneous and statistical flow fields show that negative-u structures with a small scale on a stationary bottom wall grow throughout the centerline due to the continuous positive mean shear, and they penetrate to the opposite moving wall. The development of an initial vortical structure related to negative-u structures on the bottom wall into a large-scale hairpin vortex packet with new hairpin vortices, which are created upstream and close to the wall, is consistent with the auto-generation process in a Poiseuille flow (Zhou et al., J. Fluid Mech., vol. 387, 1999, pp. 353–396). Although the initial vortical structure associated with positive-u structures on the top wall also grows toward the bottom wall, the spatial development of the structure is less coherent with weak strength due to the reduced mean shear near the top wall, resulting in less turbulent energy on the top wall. The continuous growth of the structures from a wall to the opposite wall explains the enhanced wall-normal transport of the streamwise turbulent kinetic energy near the centerline. Finally, an inspection of the time-evolving instantaneous fields and conditional averaged flow fields for the streamwise growth of a very long structure near the centerline exhibits that a streamwise concatenation of adjacent large-scale u-structures creates a very-large-scale structure near the channel centerline.  相似文献   

3.
4.
In this research, direct numerical simulation has been performed to study the turbulent wake behind a wall-mounted square cylinder with aspect ratio 4 and Reynolds number 12 000 (based on the free-stream velocity and obstacle side length) in a developing boundary layer. Owing to the relatively high Reynolds number and high aspect ratio of the cylinder tested, the wake is wide spread behind the cylinder and exhibits complex and energetic vortex motions. The lateral and tip vortex shedding patterns at different frequencies, coherent structures downstream of the obstacle, the production rate and distribution of turbulent kinetic energy, and the instantaneous pressure distribution in the wake region have been thoroughly investigated. In order to validate the numerical results, the first- and second-order flow statistics obtained from the simulations have been carefully compared against available wind-tunnel measurement data.  相似文献   

5.
Direct numerical simulation of compressible turbulent flows   总被引:3,自引:0,他引:3       下载免费PDF全文
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.  相似文献   

6.
Three-dimensional, unsteady simulations of isothermal turbulent flows in a rod bundle with a split-vane spacer grid have been performed using a segregated turbulence model, which is a combination of scale adaptive simulations and large eddy simulations. These simulations have been conducted within the framework of an international blind CFD benchmark exercise. A finer mesh than that submitted to the benchmark exercise was used for the present study, which improved the agreement of the turbulence predictions with the measurements. For the first time, several vortices were identified in the vicinity of the vanes. The strongest among these vortices, which was a central vortex in the core of each subchannel, was generated by the vane pair in each subchannel. Each vane also created a strong stream across the gap between two rods and towards an adjacent subchannel. Axial profiles of turbulent kinetic energy in each subchannel core exhibited two peaks, a low peak in the near-vane zone and a larger peak one hydraulic diameter downstream of the vanes.  相似文献   

7.
Direct numerical simulations (DNS) of incompressible turbulent channel flows coupled with Lagrangian particle tracking are performed to study the characteristics of ejections that surround solid particles. The behavior of particles in dilute turbulent channel flows, without particle collisions and without feedback of particles on the carrier fluid, is studied using high Reynolds number DNS (Re = 12,500). The results show that particles moving away from the wall are surrounded by ejections, confirming previous studies on this issue. A threshold value separating ejections with only upward moving particles is established. When normalized by the square root of the Stokes number and the square of the friction velocity, the threshold profiles follow the same qualitative trends, for all the parameters tested in this study, in the range of the experiments. When compared to suspension thresholds proposed by other studies in the Shields diagram, our simulations predict a much larger value because of the measure used to characterize the fluid and the criterion chosen to decide whether particles are influenced by the surrounding fluid. However, for intermediate particle Reynolds numbers, the threshold proposed here is in fair agreement with the theoretical criterion proposed by Bagnold (1966) [Bagnold, R., 1966. Geological Survey Professional Paper, vol. 422-1]. Nevertheless, further studies will be conducted to understand the normalization of the threshold.  相似文献   

8.
Turbulent heat transfer in a ribbed square duct of three different blockage ratios are investigated using direct numerical simulation (DNS). The results of ribbed duct cases are compared with those of a heated smooth duct flow. It is observed that owing to the existence of the ribs and confinement of the duct, organized secondary flows appear as large streamwise-elongated vortices, which intensely interact with the rib elements and four sidewalls and have profound influences on the transport of momentum and thermal energy. This study also shows that the drag and heat transfer coefficients are highly sensitive to the rib height. It is observed that as the rib height increases, the impinging effect of the flow on the windward face of the rib strengthens, leading to enhanced rates of turbulent mixing and heat transfer. The influence of sidewalls and rib height on the turbulence structures associated with temperature fluctuations are analyzed based on multiple tools such as vortex swirling strengths, temporal auto-correlations, spatial two-point cross-correlations, joint probability density functions (JPDF) between the temperature and velocity fluctuations, statistical moments of different orders, and temperature spectra.  相似文献   

9.
This paper presents direct numerical simulations (DNS) of stable and unstable turbulent thermal boundary layers. Since a buoyancy-affected boundary layer is often encountered in an urban environmental space where stable and unstable stratifications exist, exploring a buoyancy-affected boundary layer is very important to know the transport phenomena of the flow in an urban space. Although actual observation may qualitatively provide the characteristics of these flows, the relevant quantitative turbulent quantities are very difficult to measure. Thus, in order to quantitatively investigate a buoyancy-affected boundary layer in detail, we have here carried out for the first time time- and space-developing DNS of slightly stable and unstable turbulent thermal boundary layers. The DNS results show the quantitative turbulent statistics and structures of stable and unstable thermal boundary layers, in which the characteristic transport phenomena of thermally stratified boundary layers are demonstrated by indicating the budgets of turbulent shear stress and turbulent heat flux. Even though the input of buoyant force is not large, the influence of buoyancy is clearly revealed in both stable and unstable turbulent boundary layers. In particular, it is found that both stable and unstable thermal stratifications caused by the weak buoyant force remarkably alter the structure of near-wall turbulence.  相似文献   

10.
The effect of rough surface topography on heat and momentum transfer is studied by direct numerical simulations of turbulent heat transfer over uniformly heated three-dimensional irregular rough surfaces, where the effective slope and skewness values are systematically varied while maintaining a fixed root-mean-square roughness. The friction Reynolds number is fixed at 450, and the temperature is treated as a passive scalar with a Prandtl number of unity. Both the skin friction coefficient and Stanton number are enhanced by the wall roughness. However, the Reynolds analogy factor for the rough surface is lower than that for the smooth surface. The semi-analytical expression for the Reynolds analogy factor suggests that the Reynolds analogy factor is related to the skin friction coefficient and the difference between the temperature and velocity roughness functions, and the Reynolds analogy factor for the present rough surfaces is found to be predicted solely based on the equivalent sand-grain roughness. This suggests that the relationship between the Reynolds analogy factor and the equivalent sand-grain roughness is not affected by the effective slope and skewness values. Analysis of the heat and momentum transfer mechanisms based on the spatial- and time-averaged equations suggests that two factors decrease the Reynolds analogy factor. One is the increased effective Prandtl number within the rough surface in which the momentum diffusivity due to the combined effects of turbulence and dispersion is larger than the corresponding thermal diffusivity. The other is the significant increase in the pressure drag force term above the mean roughness height.  相似文献   

11.
以覆冰三分裂导线为研究对象,提出了一种模拟覆冰分裂导线舞动的数值方法。用Hamilton变分原理建立系统的动力学平衡方程,利用罚函数法引入子导线上间隔棒连接点的运动约束条件;采用Newmark法进行时间积分、Newton-Raphson法迭代求解非线性方程。通过数值算例验证了方法的正确性。在该方法的应用中由于尾流影响而导致迎风侧子导线和背风侧子导线所受空气动力载荷不同,数值模拟结果反映了这一因素对各子导线舞动轨迹的影响。此方法为分裂导线舞动的深入研究提供了一种有效途径。  相似文献   

12.
Fully developed turbulent pipe flow at low Re-number is studied by means of direct numerical simulation (DNS). In contrast to many previous DNS's of turbulent flows in rectangular geometries, the present DNS code, developed for a cylindrical geometry, is based on the finite volume technique rather than being based on a spectral method. The statistical results are compared with experimental data obtained with two different experimental techniques. The agreement between numerical and experimental results is found to be good which indicates that the present DNS code is suited for this kind of numerical simulations.  相似文献   

13.
Fully developed turbulent flow and heat transfer in a concentric annular duct is investigated for the first time by using a direct numerical simulation (DNS) with isoflux conditions imposed at both walls. The Reynolds number based on the half-width between inner and outer walls, δ=(r2-r1)/2, and the laminar maximum velocity is Reδ=3500. A Prandtl number Pr=0.71 and a radius ratio r*=0.1 were retained. The main objective of this work is to examine the effect of the heat flux density ratio, q*=q1/q2, on different thermal statistics (mean temperature profiles, root mean square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, etc.). To validate the present DNS calculations, predictions of the flow and thermal fields with q*=1 are compared to results recently reported in the archival literature. A good agreement with available DNS data is shown. The effect of heat flux ratio q* on turbulent thermal statistics in annular duct with arbitrarily prescribed heat flux is discussed then. This investigation highlights that heat flux ratio has a marked influence on the thermal field. When q* varies from 0 to 0.01, the rms of temperature fluctuations and the turbulent heat fluxes are more intense near the outer wall while changes in q* from 1 to 100, lead to opposite trends.  相似文献   

14.
The evolution of a wall-attached plume in a confined box is studied here with the aid of three dimensional direct numerical simulations (DNS). The plume originates from a local line heat source of length, L, placed at the bottom left corner of the box. The Reynolds number of the wall plume, based on box height and buoyant velocity scale, is ReH=14530 and boxes of two different aspect ratios (ratio of box width to height) for a particular value of L are simulated. We observe that the plume develops along the vertical sidewall while remaining attached to it before spreading across the top wall to form a buoyant fluid layer and eventually moving downwards and filling the whole box. The original filling box model of Baines and Turner (1969) is modified to incorporate the wall shear stress, and the results from the DNS are compared against the new model. In modelling plumes, we find that the entrainment coefficient (α) for wall-attached plumes is reduced to approximately half of that in the free plume, and the main reason is a diminished contribution of turbulence production to α resulting from a restricted ability of the large-scale eddies to transport momentum. Also, unlike the free plume where away from the source inertial forces balances buoyancy forces, here in our simulations of wall-attached plumes this balance is marginally off, likely due to wall friction. A reasonable agreement is observed between our model and DNS data for the volume and momentum fluxes in the quiescent uniform environment and also for the time-dependent buoyancy profile calculated far away from the plume.  相似文献   

15.
Our works on the fictitious domain method for the direct numerical simulation of particulate flows are reviewed, and particularly our recent progresses in the simulations of the motion of particles in Poiseuille flow at moderately high Reynolds numbers are reported. The method is briefly described, and its capability to simulate the motion of spherical and non-spherical particles in Newtonian, non-Newtonian and non-isothermal fluids is demonstrated. In addition, the applications of the fictitious domain method reported in the literature are also reviewed, and some comments on the features of the fictitious domain method and the immersed boundary method are given.  相似文献   

16.
17.
In this article, a new computational spectral algorithm is developed for simulation of general three-dimensional, time-dependent, incompressible channel flow. The development is based on a general functional formalism of non-equilibrium thermodynamics, and, although it is illustrated here for a Newtonian fluid, it is easily adapted to non-Newtonian fluids. The advantage of this algorithm is that the scalar pressure is eliminated from the discrete spectral analog to the equations of motion, which are expressed solely in terms of the spectral coefficients of the velocity vector field. This alleviates the need for the application of boundary conditions on the pressure, the specification of which can be a major source of difficulty in direct numerical simulations. At the same time, the velocity spectrum is quite general, and not subject to any a priori constraints. Thus, it is anticipated that the ideas exposed in the present algorithm can lead to the development of better numerical simulation techniques for complicated three-dimensional and turbulent flows.  相似文献   

18.
An immersed-boundary method was employed to perform a direct numerical simulation (DNS) of flow around a wall-mounted cube in a fully developed turbulent channel for a Reynolds number Re = 5610, based on the bulk velocity and the channel height. Instantaneous results of the DNS of a plain channel flow were used as a fully developed inflow condition for the main channel. The results confirm the unsteadiness of the considered flow caused by the unstable interaction of a horseshoe vortex formed in front of the cube and on both its sides with an arch-type vortex behind the cube. The time-averaged data of the turbulence mean-square intensities, Reynolds shear stresses, kinetic energy and dissipation rate are presented. The negative turbulence production is predicted in the region in front of the cube where the main horseshoe vortex originates.  相似文献   

19.
Direct numerical simulation method is used for the investigating of particle-laden turbulent flows in a spatially evolution of low Reynolds number axisymmetric jet, and the Eulerian–Lagrangian point-particle approach is employed in the simulation. The simulation uses an explicit coupling scheme between particles and the fluid, which considers two-way coupling between the particle and the fluid. The DNS results are compared well with experimental data with equal Reynolds number (Re = 1700). Our objects are: (i) to investigate the correlation between the particle number density and the fluctuating of fluid streamwise velocity; (ii) to examine whether the three-dimensional vortex structures in the particle-laden jet are the same as that in the free-air jet and how the particles modulate the thee-dimensional vortex structures and turbulence properties with different Stokes number particles; (iii) to discover the particle circumferential dispersion with different Stokes number particles. Our findings: (i) all the particles, regardless of their particle size, tend to preferentially accumulate in the region with large-than-mean fluid streamwise velocity; (ii) the small Stokes number particles take an important part in the modulation of three-dimensional vortex structures, but for the intermediate and larger sized particles, this modulation effect seems not so apparent; (iii) the particle circumferential dispersion is more effective for the smaller and intermediate sized particles, especially for the intermediate sized particles.  相似文献   

20.
Turbulent flow through a duct of square cross-section gives rise to off-axis secondary flows, which are known to transfer momentum between fluid layers thereby flattening the velocity profile. The aim of this study is to investigate the role of the secondary flows in the transport and dispersion of particles suspended in a turbulent square duct flow. We have numerically simulated a flow through a square duct having a Reynolds number of Reτ = 300 through discretization of the Navier–Stokes equations, and followed the trajectories of a large number of passive tracers and finite-inertia particles under a one-way coupling assumption. Snapshots of particle locations and statistics of single-particle and particle pair dispersion were analyzed. It was found that lateral mixing is enhanced for passive tracers and low-inertia particles due to the lateral advective transport that is absent in straight pipe and channels flows. Higher inertia particles accumulate close to the wall, and thus tend to mix more efficiently in the streamwise direction since a large number of the particles spend more time in a region where the mean fluid velocity is small compared to the bulk. Passive tracers tend to remain within the secondary swirling flows, circulating between the core and boundary of the duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号