首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The presence of an extrinsic photoluminescence (PL) band peaked at 1.356 eV at low temperature is observed, on a large number of self-assembled InAs and In0.5Ga0.5As quantum dot (QD) structures, when exciting just below the GaAs absorption edge. A detailed optical characterization allows us to attribute the 1.356 eV PL band to the radiative transition between the conduction band and the doubly ionized Cu Ga acceptor in GaAs. A striking common feature is observed in all investigated samples, namely a resonant quenching of the QD-PL when exciting on the excited level of this deep defect. Moreover, the photoluminescence excitation (PLE) spectrum of the 1.356 eV emission turns out to be almost specular to the QD PLE. This correlation between the PL efficiency of the QDs and the Cu centers evidences a competition in the carrier capture arising from a resonant coupling between the excited level of the defect and the electronic states of the wetting layer on which the QDs nucleate. The estimated Cu concentration is compatible with a contamination during the epitaxial growth. Received 13 November 2001 / Received in final form 28 May 2002 Published online 19 July 2002  相似文献   

2.
We present a study about the origin of the huge emission linewidths broadening commonly observed for wurtzite GaN/AlN quantum dots. Our analysis is based on a statistically significant number of quantum dot spectra measured by an automatized µ‐photoluminescence mapping system applying image recognition techniques. A clear decrease of the single quantum dot emission linewidths is observed with rising overall exciton emission energy. 8‐band k · p based model calculations predict a corresponding decrease of the built‐in exciton dipole moments with increasing emission energy in agreement with the measured behavior for the emission linewidths. Based on this proportionality we explain the particular susceptibility of nitride quantum dots to spectral diffusion causing the linewidth broadening via the linear quantum‐confined Stark effect. This is the first statistical analysis of emission linewidths that identifies the giant excitonic dipole moments as their origin and estimates the native defect‐induced electric field strength to ~2 MV/m. Our observation is in contrast to less‐polar quantum dot systems as e.g. arsenides that exhibit a naturally lower vulnerability to emission linewidth broadening due to almost negligible exciton dipole moments. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this article we study the impact of the spin-orbit interaction on the electron quantum confinement for narrow gap semiconductor quantum dots. The model formulation includes: (1) the effective one-band Hamiltonian approximation; (2) the position- and energy-dependent quasi-particle effective mass approximation; (3) the finite hard wall confinement potential; and (4) the spin-dependent Ben Daniel-Duke boundary conditions. The Hartree-Fock approximation is also utilized for evaluating the characteristics of a two-electron quantum dot system. In our calculation, we describe the spin-orbit interaction which comes from both the spin-dependent boundary conditions and the Rashba term (for two-electron quantum dot system). It can significantly modify the electron energy spectrum for InAs semiconductor quantum dots built in the GaAs matrix. The energy state spin-splitting is strongly dependent on the dot size and reaches an experimentally measurable magnitude for relatively small dots. In addition, we have found the Coulomb interaction and the spin-splitting are suppressed in quantum dots with small height. Received 15 May 2001 / Received in final form 14 May 2002 Published online 13 August 2002  相似文献   

4.
The negatively charged exciton in double-layer quantum dots   总被引:1,自引:0,他引:1  
The hyperangular equation for charged semiconductor complexes in a double-layer harmonic quantum dot was solved numerically by using the correlated hyperspherical harmonics as basis functions. By using this method, we have calculated the energy spectra of the low-lying states of a charged exciton as a function of the radius of the quantum dot and the binding energy spectra of the ground state as a function of the radius of the quantum dot for a few values of the distance between the vertically coupled dots and the electron-to-hole mass ratio. Received 3 December 1999  相似文献   

5.
We have computed electronic structures and total energies of circularly confined two-dimensional quantum dots and their lateral dimers in zero and finite uniform external magnetic fields using different theoretical schemes: the spin-density-functional theory (SDFT), the current-and-spin-density-functional theory (CSDFT), and the variational quantum Monte Carlo (VMC) method. The SDFT and CSDFT calculations employ a recently-developed, symmetry-unrestricted real-space algorithm allowing solutions which break the spin symmetry. Results obtained for a six-electron dot in the weak confinement limit and in zero magnetic field as well as in a moderate confinement and in finite magnetic fields enable us to draw conclusions about the reliability of the more approximative SDFT and CSDFT schemes in comparison with the VMC method. The same is true for results obtained for the two-electron quantum dot dimer as a function of inter-dot distance. The structure and role of the symmetry-breaking solutions appearing in the SDFT and CSDFT calculations for the above systems are discussed. Received 16 October 2001 and Received in final form 17 January 2002  相似文献   

6.
We examine a generic three level mechanism of quantum computation in which all fundamental single and double qubit quantum logic gates are operating under the effect of adiabatically controllable static (radiation free) bias couplings between the states. Under the time evolution imposed by these bias couplings the quantum state cycles between the two degenerate levels in the ground state and the quantum gates are realized by changing Hamiltonian at certain time intervals when the system collapses to a two state subspace. We propose a physical implementation of the mechanism using Aharonov-Bohm persistent-current loops in crossed electric and magnetic fields, with the output of the loop read out by using a quantum Hall effect aided mechanism. Received 26 March 2002 / Received in final form 8 July 2002 Published online 19 November 2002  相似文献   

7.
We investigate the effects of a magnetic field with low to intermediate strength on several spectroscopic properties of the sodium atom. A model potential is used to describe the core of sodium, reducing the study of the system to an effective one-particle problem. All states with principal quantum numbers n = 3, 4, 5, 6 and 7 are studied and analysed. A grid of twenty values for the field strength in the complete regime B = 0 - 0.02 a.u. is employed. Ionisation energies, transition wavelengths and their dipole oscillator strengths are presented. Received 5 November 2002 Published online 4 February 2003  相似文献   

8.
Artificial molecules, namely laterally coupled quantum dots with a three-dimensional spherical confinement potential well of radius R and depth V 0, were studied by the unrestricted Hartree-Fock-Roothaan (UHFR) method. By varying the distance d between the centers of the two coupled quantum dots, the transition from the strong coupling situation to the weak one is realized. Hund's rule, suitable for a single quantum dot is destroyed in certain conditions in the artificial molecule. For example, in the few-electron system of the strongly coupled quantum-dot molecule, a transformation of spin configuration has been found. Received 8 March 2002 / Received in final form 29 May 2002 Published online 17 September 2002  相似文献   

9.
A quantum gravity-gradiometer consists of two spatially separated ensembles of atoms interrogated by pulses of a common laser beam. The laser pulses cause the probability amplitudes of atomic ground-state hyperfine levels to interfere, producing two, motion-sensitive, phase shifts, which allow the measurement of the average acceleration of each ensemble, and, via simple differencing, of the acceleration gradient. Here we propose entangling the quantum states of atoms from the two ensembles prior to the pulse sequence, and show that entanglement encodes their relative acceleration in a single interference phase which can be measured directly, with no need for differencing. Received 6 June 2002 / Received in final form 25 October 2002 Published online 28 January 2003  相似文献   

10.
We present, by means of cw and time-resolved photoluminescnce, a detailed experimental study of the optical properties of a large set of InAs self-assembled quantum dots grown on (N11)A/B GaAs substrates with different InAs coverages. Large variation of the external PL efficiency is observed, with a strong asymmetry between the A and B substrate termination. The analysis of PL time evolution leads us to exclude that the reduction of PL intensity would be associated to an increase of the non radiative recombination rates. The PL efficiency and decay times of the complete series of samples can be understood as a consequence of a large built-in electric potential associated to piezoelectric field and permanent dipole moment inside the QDs. Received 25 October 2001 and Received in final form 5 February 2002  相似文献   

11.
The dipole modes of non-parabolic quantum dots are studied by means of their current and density patterns as well as with their local absorption distribution. The anticrossing of the so-called Bernstein modes originates from the coupling with electron-hole excitations of the two Landau bands which are occupied at the corresponding magnetic fields. Non-quadratic terms in the potential cause an energy separation between bulk and edge current modes in the anticrossing region. On a local scale the fragmented peaks absorb energy in complementary spatial regions which evolve with the magnetic field. Received 3 December 2001 / Received in final form 5 April 2002 Published online 9 July 2002  相似文献   

12.
13.
Electronic structure of three-dimensional quantum dots   总被引:1,自引:0,他引:1  
We study the electronic structure of three-dimensional quantum dots using the Hartree-Fock approximation. The confining potential of the electrons in the quantum dot is assumed to be spatially isotropic and harmonic. For up to 40 interacting electrons the ground-state energies and ground-state wavefunctions are calculated at various interaction strengths. The quadrupole moments and electron densities in the quantum dot are computed. Hund's rule is confirmed and a shell structure is identified via the addition energies and the quadrupole moments. While most of the shell structure can be understood on the basis of the unperturbed non-interacting problem, the interplay of an avoided crossing and the Coulomb interaction results in an unexpected closed shell for 19 electrons. Received 5 November 2001 / Received in final form 12 November 2002 Published online 1st April 2003 RID="a" ID="a"e-mail: vorrath@physnet.uni-hamburg.de  相似文献   

14.
The magnetic dipole (M1) and electric quadupole (E2) responses of two-dimensional quantum dots with an elliptic shape are theoretically investigated as a function of the dot deformation and applied static magnetic field. Neglecting the electron-electron interaction we obtain analytical results which indicate the existence of four characteristic modes, with different B-dispersion of their energies and associated strengths. Interaction effects are numerically studied within the time-dependent local-spin-density and Hartree approximations, assessing the validity of the non-interacting picture. Received 29 November 2001 Published online 6 June 2002  相似文献   

15.
A survey on the generalizations of Heisenberg uncertainty relation and a general scheme for their entangled extensions to several states and observables is presented. The scheme is illustrated on the examples of one and two states and canonical quantum observables, and spin and quasi-spin components. Several new uncertainty relations are displayed. Received 10 October 2001 / Received in final form 6 March 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: dtrif@inrne.bas.bg  相似文献   

16.
For a closed bi-partite quantum system partitioned into system proper and environment we interpret the microcanonical and the canonical condition as constraints for the interaction between those two subsystems. In both cases the possible pure-state trajectories are confined to certain regions in Hilbert space. We show that in a properly defined thermodynamical limit almost all states within those accessible regions represent states of some maximum local entropy. For the microcanonical condition this dominant state still depends on the initial state; for the canonical condition it coincides with that defined by Jaynes' principle. It is these states which thermodynamical systems should generically evolve into. Received 13 June 2002 / Received in final form 14 November 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: jochen@theol.physik.uni-stuttgart.de  相似文献   

17.
We study the non-equilibrium time evolution of the average transverse magnetisation and end-to-end correlation functions of the random Ising quantum chain. Starting with fully magnetised states, either in the x or z direction, we compute numerically the average quantities. They show similar behaviour to the homogeneous chain, that is an algebraic decay in time toward a stationary state. During the time evolution, the spatial correlations, measured from one end to the other of the chain, are building up and finally at long time they reach a size-dependent constant depending on the distance from criticality. Analytical arguments are given which support the numerical results. Received 11 July 2002 / Received in final form 9 September 2002 Published online 29 October 2002  相似文献   

18.
We have performed single dot photoluminescence and time-resolved ensemble photoluminescence measurements on InAs quantum dots embedded in a lateral in-plane p–i–n or n–i–n device, respectively, which makes the application of lateral electric fields, i.e. field direction perpendicular to the growth direction, feasible. Time-resolved measurements show an increase in the radiative lifetime of up to 30% with increasing field. We attribute this to the reduced overlap between the electron and hole wave functions. Single dot spectroscopy revealed a small red-shift of the emission energies of maximum 0.5 meV. This shift can be explained by the quantum confined Stark effect taking into account that the red-shift due to the band-tilting is partly compensated by a decrease in exciton binding energy.  相似文献   

19.
A floating Wigner crystal differs from the standard one by a spatial averaging over positions of the Wigner-crystal lattice. It has the same internal structure as the fixed crystal, but contrary to it, takes into account rotational and/or translational symmetry of the underlying jellium background. We study properties of a floating Wigner molecule in few-electron spin-polarized quantum dots, and show that the floating solid has the lower energy than the standard Wigner crystal with fixed lattice points. We also argue that internal rotational symmetry of individual dots can be broken in arrays of quantum dots, due to degenerate ground states and inter-dot Coulomb coupling. Received 12 September 2001 / Received in final form 24 April 2002 Published online 9 July 2002  相似文献   

20.
A general scheme for reducing the center-of-mass entropy is proposed. It is based on the repetition of a cycle, composed of three concepts: velocity selection, deceleration and irreversible accumulation. Well-known laser techniques are used to represent these concepts: Raman π-pulse for velocity selection, STIRAP for deceleration, and a single spontaneous emission for irreversible accumulation. No closed pumping cycle nor repeated spontaneous emissions are required, so the scheme is applicable to cool a molecular gas. The quantum dynamics are analytically modelled using the density matrix. It is shown that during the coherent processes the gas is translationally cooled. The internal states serve as an entropy sink, in addition to spontaneous emission. This scheme provides new possibilities to translationally laser-cool molecules for high precision molecular spectroscopy and interferometry. Received 25 June 2002 / Received in final form 28 September 2002 Published online 12 November 2002 RID="a" ID="a"e-mail: ooi@spock.physik.uni-konstanz.de RID="b" ID="b"e-mail: Peter.Marzlin@uni-konstanz.de RID="c" ID="c"e-mail: Juergen.Audretsch@uni-konstanz.de  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号