首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A theoretical and experimental investigation on the magnetocaloric properties of the rare earth pseudo-binary compounds Gd1−nPrnAl2 is presented. The calculated isothermal entropy and adiabatic temperature changes under magnetic field variations from 0 to 2 T and from 0 to 5 T are in good agreement with the experimental data. For the Pr-concentrations n=0.25, 0.5 and 0.75 the experimental data present an inverse magnetocaloric effect which was theoretically predicted and associated with the competition between the opposite magnetizations of the Gd and Pr sublattices. The two-sublattice Hamiltonian used in the calculations takes into account the crystal field, exchange and Zeeman interactions.  相似文献   

2.
The magnetocaloric effect and thermal stability have been investigated on the new bulk metallic glass (BMG) Gd52.5Co16.5Al31 alloy. The extent of supercooled liquid region is 70 K, which is wider than that of any other Gd-Co-Al ternary BMGs. The magnetic entropy change (ΔSM) and relative cooling power (RCP) of 9.8 J/kg K and 9.1×102 J/kg are obtained, respectively, under a field change of 5 T. The large ΔSM and RCP values make Gd52.5Co16.5Al31 BMG attractive potential candidate for the magnetic refrigeration application.  相似文献   

3.
Magnetocaloric effect and refrigerant capacity of Gd-based Gd60FexCo30−xAl10 metallic glasses are investigated for x = 0, 10 , 20 and 30. It is found that the non-linearity of saturation magnetization in crystalline Co-Fe binary alloys can be transferred to the quaternary metallic glass. Whereas the magnetocaloric specific values of Gd60Co30Al10 are comparable in magnitude with those of other Gd-based metallic glasses, Fe addition leads to an increase of the saturation magnetization and refrigerator capacity with a maximum for x = 20. Simultaneously, the temperature of maximum isothermal change of magnetic entropy TΔSmax increases from 145 to 200 K with increasing Fe-content and also the halfwidth ΔTSmax/2 of the ΔS-T-curve is considerably broadened. Furthermore, the effect of thermal treatment slightly above the first crystallization event on the magnetocaloric effect are investigated, showing a lowering of the working temperature in the first place.  相似文献   

4.
The structures and magnetocaloric effects of (Gd1−xTbx)Co2 (x=0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, and 1) pseudobinary compounds were investigated by X-ray powder diffraction and magnetic properties measurement. The results show that the Tc of the alloy is near room temperature when X=0.6. The magnetic entropy changes of the compounds increase from 1.7 to 3.6 J/kg K with increasing the content of Tb under an applied field up to 2 T. All the compounds exhibit second order magnetic change. As a result, the values of their ΔSM are lower than that of some large magnetocaloric effect materials.  相似文献   

5.
Rare-earth based metallic glasses with high saturation magnetization show a sizeable magnetocaloric effect (MCE) and are subject of extensive research concerning magnetic refrigeration materials. In this work, the magnetic phase transition from paramagnetic to ferromagnetic of Gd60Co30Al10 metallic glass has been characterized and three different methods were applied for the determination of its magnetocaloric specific parameters: (a) direct measurement of the adiabatic temperature change by exposing the material to an adiabatically applied magnetic field; (b) determination of the magnetization M(H,T) and calculation of the temperature dependent magnetic field induced entropy change ΔSm by application of the Maxwell relation and (c) measuring the total heat capacity Cp(H,T) in zero and non-zero magnetic field. Gd60Co30Al10 glassy ribbons were prepared by melt spinning, a technique that offers very high cooling rates due to the low dimensionality of the sample. Depending on the particular method of measurement, pieces of these glassy ribbons form samples with different appropriate total volume and dimensions. We show that the combination of the pronounced two-dimensionality of the ribbon pieces (aspect ratio ∼100) together with the very high magnetic permeability principally can cause strong internal demagnetizing fields that cannot be neglected when evaluating the intrinsic MCE parameters obtained from different methods.  相似文献   

6.
We investigated magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with TC=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔSm=−7.2 J kg−1 K−1 at T=212.5 K and refrigeration capacity of 228 J kg−1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound.  相似文献   

7.
The electronic structure of hexagonal Gd3Co11B4 compound has been studied by X-ray photoemission spectroscopy (XPS) and ab initio self-consistent tight binding linear muffin tin orbital (TB LMTO) method. We have found a good agreement between the experimental XPS valence band spectra and theoretical LMTO calculations. Results showed that the Gd3Co11B4 compound is ferrimagnetic with the calculated total magnetic moment M=14.29 μB/f.u. The values of the magnetic moments on Co atoms strongly depend on the local environment. We have also compared the electronic structure and magnetic properties of Gd3Co11B4 compound with those of Nd3Co11B4 compound.  相似文献   

8.
The influence of monovalent doping on the magnetocaloric effect (MCE) and refrigerant capacity or relative cooling power (RCP) of Pr0.5Sr0.3M0.2MnO3 (M=Na, Li, K and Ag) materials has been investigated. A large magnetocaloric effect was inferred over a wide range of temperature around the second order paramagnetic–ferromagnetic transition. The maximum magnetic entropy changes (ΔSM) reached 1.8, 2.2, 1.6 and 2.1 J/kg K and the relative cooling power (RCP) approached 58.9, 59.3, 69.6 and 54.6 J/kg for Na, Li, K and Ag doped materials in the magnetic change of 15 kOe, respectively. According to the results determined by the Maxwell relation, the magnetic entropy change fits well with the Landau theory of phase transition above TC for Pr0.5Sr0.3Li0.2MnO3. The large magnetic entropy change induced by low magnetic field suggested that these materials are beneficial for practical applications.  相似文献   

9.
We report the magnetocaloric effect in the metamagnetic compound Gd2In obtained from magnetization measurement. Gd2In was previously reported to have two magnetic transitions: (i) a paramagnetic to ferromagnetic transition below 190 K and (ii) a ferromagnetic to an antiferromagnetic state below 105 K. The low temperature antiferromagnetic state is unstable under an applied magnetic field and undergoes metamagnetic transition to a ferromagnetic like state. We observe conventional positive magnetocaloric effect (the magnetic entropy change, ΔSM<0) around 190 K at all applied fields. The magnetocaloric effect is found to be inverse (negative) at low fields around 105 K (ΔSM>0), however it turns positive at higher fields (ΔSM<0). The observed anomaly is found to be related to the field induced transition which drives the system from an antiferromagnetic to a ferromagnetic state.  相似文献   

10.
Magnetic refrigeration is an innovative technology owing to its high-efficiency, low-energy consumption, and environmental friendliness. However, the manufacturing process of the magnetocaloric materials is an obstacle to the effective application of those materials on refrigeration systems. In this work, we present a magnetic characterization of the Gd5.09Ge2.03Si1.88.alloy, analyzing the as-cast bulk and the sintered tablets after some heat treatments. The study of powder metallurgy parameters such as grain size, compacting pressure and sintering process has showed results comparable to the as-cast alloy, which presents ΔST=−18 /kg K.  相似文献   

11.
The structural and magnetic properties of the alloy system REIn0.5Ag0.5 [RE = Gd, Tb, Dy, Ho, Er, Tm and Yb] are reported. All these alloys (except that of Yb) crystallize in a cubic CsCl type structure at room temperature. Low temperature X-ray diffraction data does not reveal any structural phase transformation down to 8 K. On the basis of magnetic susceptibility data at a different temperature (3–300 K) and applied magnetic field (2 × 105 to 8 × 106 A m-1, it has been concluded that GdIn0.5Ag0.5 is ferromagnetic (Tc = 118 K), TbIn0.5Ag0.5 and DyIn0.5Ag0.5 are meta magnetic (TN = 66 and 30 K, respectively) and alloys involving Ho, Er, Tm and Yb are ferrimagnetic with Néel temperatures (TN) equal to 24, 22, 21 and 20 K, respectively. The evaluated effective magneton number (p) is found to be slightly larger compared to theoretical values for tripositive ions of Gd, Tb and Dy and a bit smaller for Ho, Er, Tm and Yb. The results have been qualitatively explained using appropriate theories.  相似文献   

12.
E. Yüzüak  I. Dincer  Y. Elerman 《中国物理 B》2010,19(3):37502-037502
The magnetocaloric properties of the Gd 5 Ge 2.025 Si 1.925 In 0.05 compound have been studied by x-ray diffraction,magnetic and heat capacity measurements.Powder x-ray diffraction measurement shows that the compound has a dominant phase of monoclinic Gd5Ge2Si2-type structure and a small quantity of Gd 5(Ge,Si) 3-type phase at room temperature.At about 270 K,this compound shows a first order phase transition.The isothermal magnetic entropy change(△SM) is calculated from the temperature and magnetic field dependences of the magnetization and the temperature dependence of MCE in terms of adiabatic temperature change(△Tad) is calculated from the isothermal magnetic entropy change and the temperature variation in zero-field heat-capacity data.The maximum S M is 13.6 J·kg-1·K-1 and maximum △Tad is 13 K for the magnetic field change of 0-5 T.The Debye temperature(θD) of this compound is 149 K and the value of DOS at the Fermi level is 1.6 states/eV·atom from the low temperature zero-field heat-capacity data.A considerable isothermal magnetic entropy change and adiabatic temperature change under a field change of 0-5 T jointly make the Gd5Ge2.025Si1.925 In 0.05 compound an attractive candidate for a magnetic refrigerant.  相似文献   

13.
In this work we present a model to describe the magnetocaloric effect (MCE) in ferrimagnetic arrangements. Our model takes into account the magnetoelastic interactions in the two coupled magnetic sublattices, which can lead to the onset of the first order magnetic phase transition and the giant-MCE. Several profiles of the MCE, such as: the inverse- and giant-MCE were systematically studied. Application of the model to the ferromagnetic compounds GdAl2, Gd5(Ge1.72Si2.28), Gd5(Ge2Si2), and to the ferrimagnetic compound Y3Fe5O12 was performed, showing a good agreement with the experimental data.  相似文献   

14.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

15.
Evolution of structure and magnetocaloric properties in ball-milled Gd5Si2Ge2 and Gd5Si2Ge2/0.1 wt% Fe nanostructured powders were investigated. The high-energy ball-milled powders were composed of very fine grains (70–80 nm). Magnetization decreased with milling time due to decrease in the grain size and randomization of the magnetic moments at the surface. The magnetic entropy change (ΔSM) was calculated from the isothermal magnetization curves and a maximum value of 0.45 J/kg K was obtained for 32 h milled Gd5Si2Ge2 alloy powder for a magnetic field change of 2 T while it was still low in Fe-contained alloy powders. The thermo-magnetic measurements revealed that the milled powders display distribution of magnetic transitions, which is desirable for practical magnetic refrigerant to cover a wide temperature span.  相似文献   

16.
The magnetocaloric effect (MCE) in the DyNi2, DyAl2 and Tb1−nGdnAl2 (n=0, 0.4, 0.6) was theoretically investigated in this work. The DyNi2 and DyAl2 compounds are described considering a model Hamiltonian which includes the crystalline electrical field anisotropy. The anisotropic MCE was calculated changing the magnetic field direction from 〈1 1 1〉 to 〈0 0 1〉 in DyNi2 and from 〈1 0 0〉 to 〈0 1 1〉 in DyAl2. The influence of the second- and first-order spin-reorientation phase transitions on the MCE that occurs in these systems is discussed. For the calculations of the MCE thermodynamic quantities in the Tb1−nGdnAl2 systems we take into account a two sites magnetic model, and good agreement with the available experimental data was obtained.  相似文献   

17.
18.
We have explored a simple Landau model to calculate magnetization isotherms considering magnetic hysteresis. The model parameters have been chosen to fit the magnetic and magnetocaloric data of MnAs compound. Experimental data show that there is a great difference between the isothermal variation of the entropy (ST) obtained from isotherms measured increasing and decreasing magnetic field. This great difference is reproduced theoretically. From the experimental and phenomenological isotherms, we calculated the ST. From the theoretical entropy, we also obtained ST, which does not present the colossal peak.  相似文献   

19.
Magnetocaloric effect of MnV1.95Al0.05O4 was studied by the magnetization and heat capacity measurements. MnV1.95Al0.05O4 is a cubic spinel structure with ferromagnetism of second order in nature and performs reversible magnetic entropy around the magnetic transition temperature. The large magnetic entropy changes −ΔSM∼5.2 and 8.2 J/kg K and the adiabatic temperature changes ΔTad∼1.5 and 2.6 K are revealed for the magnetic field changes of 2 and 4 T near the Curie temperature (TC) of 59.6 K, respectively. The relative cooling power (RCP) are about 82.2 and 177.2 J/kg K for magnetic field changes 2 and 4 T, respectively. Compared with the parent compound, although the −ΔSM and ΔTad become smaller, the refrigeration working temperature span and the RCP have been improved.  相似文献   

20.
The energy structure and temperature evolution of the magnetic excitation spectra of Pr0.5Sr0.5CoO3 are studied by inelastic neutron scattering. The measurements are performed on a polycrystalline sample of Pr0.5Sr0.5CoO3 and its non-magnetic analogue La0.5Sr0.5CoO3 on the high intensity time-of-flight spectrometer IN4 (ILL, Grenoble) in the temperature range 10 K < T < 300 K. The crystal electric field parameters in Pr0.5Sr0.5CoO3 are calculated and the splitting scheme of the 4f ground multiplet of Pr3+ ions is determined based on the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号