首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Cross-polarization from a spin I=1/2 nucleus (e.g., 1H) to a spin S = 3/2 nucleus (e.g., 23Na) or a spin S = 5/2 nucleus (e.g., 27A1 or nO) in static powder samples is investigated. The results of conventional (single-quantum), three-quantum, and five-quantum cross-polarization experiments are presented and discussed. Based on a generalization of an existing theory of cross-polarization to quadrupolar nuclei, computer simulations are used to model the intensity and lineshape variations observed in cross-polarized NMR spectra as a function of the radio-frequency field strengths of the two simultaneous spin-locking pulses. These intensity and lineshape variations can also be understood in terms of the spin S = 3/2 or 5/2 nutation rates determined from experimental quadrupolar nutation spectra. The results of this study are intended as a preliminary step towards understanding single- and multiple-quantum cross-polarization to quadrupolar nuclei under MAS conditions and the application of these techniques to the MQMAS NMR experiment.  相似文献   

2.
The technique of multiple-quantum J-resolved NMR spectroscopy (MQ-JRES) is introduced and applied to the spin system SI3M (such as in the example given here, the 13CH312CH in alanine). The SI3 spin system was excited to its highest quantum state (8SyIxIyIy), which consists of four coherences: quadruple quantum of (3I + S), double quantum of (3IS), double quantum of (I + S), and zero quantum of (IS). In the MQ spectrum generated from the projection onto the F1 dimension, the resonances of the different multiple-quantum coherences are resolved by their coupling constants to the remote spin (M). The absorptive lineshapes in both F1 and F2 dimensions enable accurate measurements of transverse relaxation rates, and both amplitude and relative signs of the long-range coupling constants are to be derived from either frequency or time domain data. The selective detection of MQ-JRES spectra of the individual MQ coherences using either phase cycling or pulsed field gradients is presented.  相似文献   

3.
Continuous wave cross-polarization (CP) NMR experiments with magic angle spinning (MAS) are reviewed for the case of isolated spin pairs I-S, with spin quantum numbers I = ½ and S ½ (1/2, 3/2, …). For two spin-1/2 nuclei, the Hartmann-Hahn matching conditions are examined at various sample rotation rates νR, especially with regard to off-resonance behaviour. In addition to signal enhancement, the CPMAS experiment can be used for the selective determination of inter-nuclear distances between spin-1/2 nuclei. Theoretical examination of the CP transfers to single-quantum (1Q-CPMAS) and multiple-quantum (MQ-CPMAS) levels of quadrupolar nuclei is presented. Simple analytical formulae describing the Hartmann-Hahn matching under various experimental conditions are verified using computer simulations of the spin density matrix under MAS, and the experimental data. The strategies for the most efficient acquisition of 1Q-CPMAS and MQ-CPMAS spectra are extensively discussed.  相似文献   

4.
A multiple-quantum magic angle spinning (MQMAS) NMR experiment of quadrupolar nuclei is demonstrated, which uses two different multiple quantum coherences in t(1) to refocus the quadrupolar broadening. This experiment has the potential of achieving improved resolution over current techniques.  相似文献   

5.
Complex spinning sidebands are observed in magic-angle-spinning (MAS) NMR spectra arising from isolated tightlyJ-coupled spin pairs under slow spinning conditions. Such spinning sidebands are sensitive to the magnitude and relative orientation of the chemical-shift tensors, the dipolar-coupling tensor, and the sign of the indirect spin–spin (J) coupling. We show that it is possible to extract information concerning such NMR parameters from an analysis of the observed spinning sidebands. As an example, numerical simulations are carried out to reproduce observed31P MAS NMR spectra of a phosphole tetramer (1) ando-bis(diphenylphosphino)benzene (2), so that invaluable information concerning the orientations of the phosphorus chemical-shift tensors and the sign ofJ(31P,31P) can be deduced. Simulations are carried out by numerically evaluating the spin-density matrix of the spin system.  相似文献   

6.
Cross-polarization from (1)H to the multiple-quantum coherences of a quadrupolar nucleus is used in combination with the two-dimensional multiple-quantum magic angle spinning (MQMAS) NMR experiment in order to extract high-resolution CPMAS NMR spectra. The technique is demonstrated on (23)Na (S = 3/2), (17)O, (27)Al (both S = 5/2), and (45)Sc (S = 7/2) nuclei, showing the applicability of multiple-quantum cross-polarization to systems with differing spin quantum number, gyromagnetic ratio, and relative nuclide abundance. The utility of this two-dimensional MAS NMR experiment for spectral editing and site-specific measurement of cross-polarization intensities is demonstrated. The possibility of direct cross-polarization to higher order multiple-quantum coherences is also considered and three-, five-, and seven-quantum cross-polarized (45)Sc MAS NMR spectra are presented.  相似文献   

7.
13C-observe REDOR and θ-REDOR experiments for recovering the 13C–2D dipolar interaction during MAS NMR are compared. It is found that limited 2D RF power may severely compromise the performance of the REDOR experiment whereas the θ-REDOR experiment can be designed to work well. Results are presented for an isolated 13C–2D spin pair with a large deuterium quadrupolar coupling constant and for a 13C coupled to three methyl deuterons undergoing fast methyl group rotation.  相似文献   

8.
9.
Possibilities and limitations of iterative lineshape fitting procedures of MAS NMR spectra of isolated homonuclear spin pairs, aiming at determination of magnitudes and orientations of the various interaction tensors, are explored. Requirements regarding experimental MAS NMR spectra as well as simulation and fitting procedures are discussed. Our examples chosen are the isolated31P spin pairs in solid Na4P2O7· 10H2O, (1), and Cd(NO3)2· 2PPh3, (2). In both cases the two31P chemical shielding tensors in the molecular unit are related byC2symmetry, and determination of the orientations of these two tensors in the molecular frame is possible. In addition, aspects of homonuclearJcoupling will be addressed. For 1, both magnitude and sign of2Jiso(31P,31P) (Jiso= −19.5 ± 2.5 Hz) are obtained; for 2, (Jiso= +139 ± 3 Hz) anisotropy ofJwith an orientation of theJ-coupling tensor collinear, or nearly collinear, with the dipolar coupling tensor can be excluded, while absence or presence of anisotropy ofJwith any other relative orientation of theJ-coupling tensor cannot be determined.  相似文献   

10.
A new two-dimensional heteronuclear multiple-quantum magic-angle spinning (MQ MAS) experiment is presented which combines high resolution for the half-integer quadrupolar nucleus with information about the dipolar coupling between the quadrupolar nucleus and a spin I=1/2 nucleus. Homonuclear MQ coherence is initially created for the half-integer quadrupolar nucleus by a single pulse as in a standard MQ MAS experiment. REDOR recoupling of the heteronuclear dipolar coupling then allows the creation of a heteronuclear multiple-quantum coherence comprising multiple- and single-quantum coherence of the quadrupolar and spin I=1/2 nucleus, respectively, which evolves during t1. Provided that the t1 increment is not rotor synchronized, rotor-encoded spinning-sideband patterns are observed in the indirect dimension. Simulated spectra for an isolated IS spin pair show that these patterns depend on the recoupling time, the magnitude of the dipolar coupling, the quadrupolar parameters, as well as the relative orientation of the quadrupolar and dipolar principal axes systems. Spectra are presented for Na2HPO4, with the heteronuclear 23Na-1HMQ MAS experiments beginning with the excitation of 23Na (spin I=3/2) three-quantum coherence. Coherence counting experiments demonstrate that four- and two-quantum coherences evolve during t1. The heteronuclear spinning-sideband patterns observed for the three-spin H-Na-H system associated with the Na(2) site are analyzed. For an IS2 system, simulated spectra show that, considering the free parameters, the spinning-sideband patterns are particularly sensitive to only, first, the angle between the two IS internuclear vectors and, second, the two heteronuclear dipolar couplings. It is demonstrated that the proton localization around the Na(2) site according to the literature crystal structure of Na2HPO4 is erroneous. Instead, the experimental data is consistent with two alternative different structural arrangements, whereby either there is a deviation of 10 degrees from linearity for the case of two identical Na-H distances, or there is a linear arrangement, but the two Na-H distances are different. Furthermore, the question of the origin of spinning-sidebands in the (homonuclear) MQ MAS experiment is revisited. It is shown that the asymmetric experimental MQ sideband pattern observed for the low-C(Q) Na(2) site in Na(2)HPO4 can only be explained by considering the 23Na chemical shift anisotropy.  相似文献   

11.
In the frame of the density matrix formalism the lineshapes and dynamic frequency shifts in the multiplet structure of a spinI = 1/2 scalar coupled to a quadrupolar nucleus with a spinS ≥ 1 undergoing dipolar (D), quadrupolar (Q) and chemical shift anisotropy (CSA) relaxation are studied. Analytic expressions for the cross-correlation spectral densities JQ-CSA, JD-Q, JD-CSA and also for the real and imaginary Redfield elements of the relaxation matrix were obtained in the general case of noncoincident and nonaxial Q, D, and CSA tensors. On the assumption that CSA and Q interactions are comparable in magnitude the contributions of cross-correlation terms CSA-Q, CSA-D, Q-D in the linewidth and dynamic shifts of the multiplet pattern of a spinI = 1/2 were analyzed in a wide interval of correlation times (10−12-10−7 s) for a spin system13C-11B and31P-59Co as an example.  相似文献   

12.
Solid-state27Al NMR spectra have been obtained for a crystalline 1:1 complex of AlCl3and OPCl3. Aluminum chloride phosphoryl chloride, AlCl3· OPCl3(1), is unusual in that the Al–O–P bond angle is close to 180°. From analysis of the27Al MAS NMR spectra, it was determined that the27Al nuclear quadrupole coupling constant is 6.0(1) MHz, the asymmetry in the electric field gradient (efg) tensor is 0.15(2), and the isotropic chemical shift, δiso(27Al), is 88(1) ppm. Solid-state27Al NMR of a stationary sample reveals a line shape affected by a combination of anisotropic chemical shielding and second-order quadrupolar interactions. Analysis of this spectrum yields a chemical shift anisotropy of 60(1) ppm and orientations of the chemical shift and electric field gradient tensors in the molecular frame. Experimental results are compared with those calculated usingab initioHartree–Fock and density functional theory.  相似文献   

13.
The ground state of the frustrated equilateral triangular spin tube CsCrF4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by 19F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.  相似文献   

14.
Two-dimensional 27Al multiple-quantum magic angle spinning (MQMAS) NMR experiments are used to study mixtures of bayerite (α-Al(OH)3) with either silicic acid (SiO2.nH2O) or silica gel (SiO2) that have been ground together for varying lengths of time. This mechanical treatment produces changes in the 27Al MAS and MQMAS NMR spectra that correspond to the formation of new Al species. Mean values of the quadrupolar interaction (PQ) and isotropic chemical shift (δCS) are extracted from the two-dimensional 27Al NMR spectra for each of these species. The presence of significant distributions of both 27Al quadrupolar and chemical shift parameters is demonstrated and the effect of grinding duration on the magnitudes of these distributions is discussed.  相似文献   

15.
《光谱学快报》2013,46(5-6):449-459
Product operator theory is a simple quantum mechanical method that has often been used to analytically describe multi‐pulse NMR experiments for weakly coupled spin systems. Considering the existence of 2D‐J resolved NMR spectra of aqueous solutions containing S = 5/2 nuclear spins, the product operator formalism has been extended to the weakly coupled IS (I = 1/2, S = 5/2) spin system. The evolution of Ix, Iy, IxSz and IySz product operators under spin–spin coupling Hamiltonian are given here. The analytical results obtained are applied to the well‐known gated decoupler pulse sequence for heteronuclear 2D‐J resolved NMR spectroscopy.  相似文献   

16.
EPR spectra of the Er3+, Nd3+, and Ce3+ ions substituting for the Y3+ ion in the YAlO3 yttrium orthoaluminate lattice are studied. The EPR spectra of these rare-earth ions are described by a spin Hamiltonian of rhombic symmetry with an effective spin S=1/2. The principal values of the g tensors were determined from an analysis of the angular dependences of the EPR spectra. The orientation of the local magnetic axes of paramagnetic centers relative to the YAlO3 crystallographic directions are shown to depend on the actual rare-earth species. The EPR spectra exhibit a hyperfine structure due to the 167Er, 143Nd, and 145Nd odd isotopes, which permitted unambiguous identification of these spectra. The hyperfine coupling constants for the odd erbium and neodymium isotopes are determined.  相似文献   

17.
A new magic-angle spinning NMR method for distance determination between unlike spins, where one of the two spins in question is not irradiated at all, is introduced. Relaxation-induced dipolar exchange with recoupling (RIDER) experiments can be performed with conventional double-resonance equipment and utilize the familiar π-pulse trains to recouple the heteronuclear dipolar interaction under magic-angle spinning conditions. Longitudinal relaxation of the passive spin during a delay between two recoupling periods results in a dephasing of the heteronuclear coherence and consequently a dephasing of the magnetization detected after the second recoupling period. The information about the dipolar coupling is obtained by recording normalized dephasing curves in a fashion similar to the REDOR experiment. At intermediate mixing times, the dephasing curves also depend on the relaxation properties of the passive spin, i.e., on single- and double-quantum longitudinal relaxation times for the case of I = 1 nuclei, and these relaxation times can be estimated with this new method. To a good approximation, the experiment does not depend on possible quadrupolar interactions of the passive spin, which makes RIDER an attractive method when distances to quadrupolar nuclei are to be determined. The new method is demonstrated experimentally with 14N and 2H as heteronuclei and observation of 13C in natural abundance.  相似文献   

18.
The formalism for calculating the lineshape of a spin 1/2J-coupled to a high-spin nucleus undergoing quadrupolar and chemical shift anisotropy (CSA) relaxations is derived in the case where the tensors of both interactions are noncoincident and nonaxial. The expressions show that the CSA–quadrupolar interference term which is responsible for the asymmetry of lines involves a term depending on tensorial parameters. The effect of this term on the lineshapes is discussed with respect to three cases, namely coincident–axially symmetric, noncoincident–axially symmetric, and general noncoincident quadrupolar and CSA tensors. These cases are considered in the analysis of the lineshape of the1H-decoupled spectra of the31P nucleusJ-coupled to the59Co nucleus encountered in the tetrahedral cluster HFeCo3(CO)11PPh2H.  相似文献   

19.
In anticipation of using fluctuations in the nuclear dipolar and quadrupolar interaction as a probe of lithium ion motion in lithium borate glasses, the static values of these interactions were measured using a variety of echo techniques. The static quadrupolar echo spectrum of 7Li and a calculation of the dipolar interaction in crystalline Li2B4O7 (same chemical composition as the glass under study) were used to estimate the strength of the two interactions. These indicate that the dipolar and quadrupolar interactions for 6Li will be of similar size and the dipolar interaction will be dominated by the unlike spin interaction between the 6Li and the 10B, 11B spins. An appropriate theoretical model is proposed and explicit expressions for the echo amplitude are calculated in terms of the dipolar and quadrupolar second moments. This single spin model takes into account the quadrupolar interaction but treats the dipolar interaction as an effective magnetic field. Experimental results are presented which show the essential validity of the model and measurements lead to reasonable values for the dipolar and quadrupolar second moments. The relative merits of the various echo techniques are discussed.  相似文献   

20.
A semiquantitative treatment of hyperfine sublevel correlation spectra of aS=1/2,I=1 spin system is presented. The derived closed analytical expressions allow the determination of components of the dipolar and quadrupolar coupling tensors. The method is applicable if nonsecular terms can be neglected and if canonical orientations of the hyperfine interactions can be selected via a dominantg matrix or hyperfine anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号