首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Copolymerization of binary mixtures of alkyl (meth)acrylates has been initiated in toluene by a mixed complex of lithium silanolate  (s-BuMe2SiOLi) and s-BuLi (molar ratio > 21) formed in situ by reaction of s-BuLi with hexamethylcyclotrisiloxane (D3). Fully acrylate and methacrylate copolymers, i.e., poly(methyl acrylate-co-n-butyl acrylate), poly(methyl methacrylate-co-ethyl methacrylate), poly(methyl methacrylate-co-n-butyl methacrylate), poly(methyl methacrylate-co-n-butyl methacrylate), poly(isobornyl methacrylate-co-n-butyl methacrylate), poly(isobornyl methacrylate-co-n-butyl methacrylate) of a rather narrow molecular weight distribution have been synthesized. However, copolymerization of alkyl acrylate and methyl methacrylate pairs has completely failed, leading to the selective formation of homopoly(acrylate). As result of the isotactic stereoregulation of the alkyl methacrylate polymerization by the s-BuLi/s-BuMe2SiOLi initiator, highly isotactic random and block copolymers of (alkyl) methacrylates have been prepared and their thermal behavior analyzed. The structure of isotactic poly(ethyl methacrylate-co-methyl methacrylate) copolymers has been analyzed in more detail by Nuclear Magnetic Resonance (NMR). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2525–2535, 1999  相似文献   

2.
o-Methoxystyrene was polymerized with n-butyllithium (n-BuLi), Na naphthalene, and K dispersion as initiators in tetrahydrofuran (THF) and toluene. The stereoregularity of the polymer was investigated by means of the NMR spectroscopy. The methoxy resonance of the spectrum split into ten components due to the tactic pentads. It was found by x-ray examination that the polymer obtained by n-BuLi in toluene at ?45°C was crystalline and highly isotactic. In THF, the stereospecificity of the polymerization was independent of the initiator, and the isotacticity of the polymer increased with increasing reaction temperature. In toluene, the stereospecificity depended on the initiator; i.e., n-BuLi gave a polymer with higher isotacticity than that given by phenylsodium. The fraction of isotactic triad of the polymer obtained by n-BuLi in toluene at ?78°C was more than 90%, but 50% at 50°C. The presence of ca. 1% THF in toluene led to a steep decrease in the isotacticity even at ?78°C. The tacticity of the polymer given by Na naphthalene was not affected by the existence of NaB(C6H5)4 in THF. The polymerization in THF could be explained by Bovey's “single σ” process, while a penultimate effect was observed in the polymerization by n-BuLi in toluene.  相似文献   

3.
Sequential anionic copolymerization of styrene and glycidyl methacrylate (GMA) was performed with the protection of argon under normal pressure, where styrene, GMA, toluene, THF, n-butyllithium and a small amount of lithium chloride (LiCl) were used as first monomer, second monomer, solvent, polar reagent, initiator and additive, respectively. Polystyrene-b-poly(glycidyl methacrylate) diblock copolymers (PS-b-PGMA) with well-defined structure and narrow molecular weight distribution were prepared by the copolymerization reaction of poly(styryl)lithium with GMA under certain temperatures. The copolymers were characterized using gel permeation chromatography (GPC), 1H-NMR, 13C-NMR, thin layer chromatography (TLC) and hydrochloric acid-dioxane argentimetric methods. The effects of additives, copolymerization temperature and THF dosage on the copolymerization were studied. No chain transfer reaction of anionic polymerization of styrene in toluene was observed. Slightly broader molecular weight distribution of PS-b-PGMA was observed with the increase the GMA repeat units. Using THF/toluene blend solvent could reduce the polydispersity index (M w /M n ) and dissolve the copolymer better than toluene alone. Lower temperature (< -40°C) and LiCl are required to prepare PS-b-PGMA with narrower molecular weight distribution.  相似文献   

4.
Monomer reactivity ratios, r1 and r2 were determined in the anionic copolymerizations of methyl methacrylate (MMA, M1) with ethyl (EtMA), isopropyl (i-PrMA), tert-butyl (t-BuMA), benzyl (BzMA), α-methylbenzyl (MBMA), diphenylmethyl (DPMMA), α,α-dimethylbenzyl (DMBMA), and trityl (TrMA) methacrylates (M2) by use of n-BuLi as an initiator in toluene and THF at -78°C. The order of the reactivity of the monomers towards MMA anion was DPMMA > BzMA > MMA > EtMA > MBMA > i-PrMA > t-BuMA > TrMA > DMBMA in toluene and TrMA > BzMA > MMA > DPMMA > EtMA > MBMA > i-PrMA > DMBMA > t-BuMA in THF. Except for the extremely low reactivity of TrMA and DPMMA in toluene due to steric hindrance, the order was explained in terms of the polar effect of the ester groups. A linear relationship was found between log (1/r1) and Taft's σ* values of the ester groups, where the ρ* value was 1.1. The plots of log (1/r1) vs. the 1Ha (cis to the carbonyl) and 13Cß chemical shifts of the monomers were also on straight lines. The polymer obtained in the copolymerization of MMA with TrMA in toluene by n-BuLi at -78°C was a mixture of poly-MMA and a copolymer, suggesting that there exist two kinds of growing centers.  相似文献   

5.
A combination of tert-butyllithium (t-BuLi) and bis(2,6-di-t-butylphenoxy)methylaluminium (MeAI(ODBP)2) was found to be an efficient initiator for heterotactic living polymerization of certain alkyl methacrylates in toluene at low temperatures. The polymerization of methyl methacrylate (MMA) with t-BuLi/MeAI(ODBP)2 (AI/Li=5 mol/mol) in toluene at −78°C gave heterotactic-rich poly(methyl methacrylate) (PMMA) with narrow molecular weight distributions (MWDs) (heterotactic triad fraction mr = 68%, ratio of weight- to number-average molecular weights M̄w/M̄n = 1.06-1.17). Other alkyl methacrylates also gave heterotactic polymers under the same conditions; in particular, ethyl and butyl methacrylates gave polymers with heterotactic triad fractions of 87%. The highest triad heterotacticity of 91.6% was obtained for the polymerization of ethyl methacrylate at −95°C. Some characteristic features of this stereospecific polymerization were discussed based on the polymerization results combined with other structural information of the polymer such as chain-end stereostructure and stereosequence distribution in the main chain.  相似文献   

6.
Anionic polymerization of methyl methacrylate (MMA) was carried out in tetrahydrofuran (THF) or THF/toluene mixture at ?78°C initiated by triphenylmethyl sodium or lithium as initiators. Highly syndiotactic PMMA of low polydispersity (M w/m n = 1.11–1.17) could be prepared with triphenylmethyl lithium in THF or THF/toluene mixture at ? 78°C. Moreover, PMMA macromonomer having one vinylbenzyl group per polymer chain was prepared by the couplings of living PMMA initiated by triphenylmethyl lithium with p-chloromethyl styrene (CMS) at ?78°C. The coupling reaction of living PMMA initiated by triphenylmethyl sodium with CMS was scarcely occurred.  相似文献   

7.
The cationic bridged zirconocene complex [iPr(Cp)(Ind)Zr(Me)(THF)][BPh4] ( 1 ‐BPh4) was synthesized. Polymerization of methyl methacrylate with 1 ‐BPh4 in CH2Cl2 at temperatures between –20 and 20°C led to the formation of isotactic poly(methyl methacrylate). The low polydispersity index of the polymer obtained and a successful two step polymerization of methyl methacrylate with 1 ‐BPh4 are hints towards a living polymerization mechanism. 1H and 13C NMR analysis revealed an enantiomorphic site‐controlled mechanism for the formation of isotactic poly(methyl methacrylate).  相似文献   

8.
In this study, synthesis of poly(epichlorohydrin-g-methyl methacrylate) graft copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization was reported. For this purpose, epichlorohydrin was polymerized by using HNO3 via cationic ring-opening mechanism. A RAFT macroinitiator (macro-RAFT agent) was obtained by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin. The graft copolymers were synthesized using macro-RAFT agent as initiator and methyl methacrylate as monomer. The synthesis of graft copolymers was conducted by changing the time of polymerization and the amount of monomer-initiator concentration that affect the RAFT polymerization. The effects of these parameters on polymerization were evaluated via various analyses. The characterization of the products was determined using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared spectroscopy, gel-permeation chromatography, thermogravimetric analysis, elemental analysis, and fractional precipitation techniques. The block lengths of the graft copolymers were calculated by using 1H-NMR spectrum. It was observed that the block length could be altered by varying the monomer and initiator concentrations.  相似文献   

9.
Novel telechelic tribromo terminated polyurethane (Br3-PU-Br3) was used as a macroinitiator in atom transfer radical polymerization (ATRP) of methyl methacrylate using CuBr as a catalyst and NN,N',N”,N”-pentamethyldiethylenetriamine (PMDETA) as a ligand. During the course of polymerization, poly(methyl methacrylate)-b-polyurethane-b-poly(methyl methacrylate) (PMMA-b-PU-b-PMMA) tri-block copolymers were formed. The resulting tri-block copolymers were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectroscopy. Molecular weight of the tri-block copolymers increases with increasing conversion. This result shows Br3-PU-Br3/CuBr/PMDETA initiating system polymerized methyl methacrylate through ATRP mechanism. NMR spectroscopy results revealed that apart from bromine atom transfer from Br3-PU-Br3 to PMDETA-CuBr complex, bromine atom transfer from the initially formed tri-block copolymer to PMDETA-CuBr complex also takes place, and, as a result, double bond terminated copolymer formed. Mole ratio of polyurethane and poly(methyl methacrylate) present in the PMMA-b-PU-b-PMMA tri-block copolymers was calculated using 1H-NMR spectroscopy and it was found to be comparable with the mole ratio calculated through GPC results. Differential scanning calorimetric results confirmed the presence of two different phases in the tri-block copolymers.  相似文献   

10.
The kinetics of polymerization of α-methylstyrene by n-BuLi (labeled with C14 and unlabeled) has been studied in tetrahydrofuran at ?78°C. The catalyst n-BuLi was used as a complex of n-BuLi in THF and a hexane solution of n-BuLi. Contrary to expectations, the relative polymerization rate and the catalyst consumption were higher when a hexane solution of n-BuLi was used. Experimental molecular weights of the polymers greatly exceeded those calculated for the case of complete catalyst consumption. The polymers exhibited low polydispersity, and when a hexane solution of n-BuLi was used, the molecular weight distribution was bimodal. The rate of initiation for the case of polymerization α-methylstyrene with a hexane solution of n-BuLi as a catalyst was much higher than in the polymerization of α-methylstyrene with the use of the complex of n-BuLi in THF as in situ catalyst. Experimental data confirm the preferable interaction of α-methylstyrene with associated n-BuLi in the presence of THF. The complex which was formed as a result of such interaction is an active centers of polymerization.  相似文献   

11.
In order to determine the stereoregularity of poly(4-vinylpyridine), 4-vinylpyridine-β,β-d2 was synthesized from 4-acetylpyridine. The 1H-NMR spectra of the deuterated and nondeuterated polymers were measured and analyzed. From the 1H-NMR spectra of poly(4-vinylpyridine-β,β-d2), triad tacticity can be obtained, while the 1H-NMR spectra of nondeuterated poly(4-vinylpyridine) give the fraction of isotactic triad. The 13C-NMR spectra of poly(4-vinylpyridine) were also observed, and the spectra of C4 carbon of polymers were assigned by the pentad tacticities. The fraction of isotactic triad of poly(2-vinylpyridine) and poly(4-vinylpyridine) obtained under various polymerization conditions were determined. The radical polymerization and anionic polymerizations with phenylmagnesium bromide and n-butyllithium as catalysts of 4-vinylpyridine gave atactic polymers.  相似文献   

12.
Polymer tacticity was determined by 19 mHz 13C-NMR spectroscopy for isotactic, atactic, and syndiotactic samples of six poly(alkyl α-bromoacrylate)s. Included in this series were the methyl, ethyl, n-propyl, i-propyl, n-butyl, and n-pentyl esters. Complete assignments for the 10 pentad peaks of the carbonyl carbon resonance were achieved for all but the i-propyl ester while a complete analysis of tetrad tacticity from the backbone methylene carbon resonance was possible for all but the methyl ester. The tetrad values calculated from the experimentally determined pentad contents were found to agree with the experimental tetrad values. As a result of insufficient peak separation of the quaternary carbon resonance, complete pentad assignments were possible in only a few instances. The polymerization reaction mechanisms were discussed in terms of the propagation statistics calculated from the experimentally determined tetrads and pentads. Both the atactic and syndiotactic polymers that were synthesized by free radical techniques displayed Bernoullian or random statistics while the stereochemical statistics of the isotactic polymers synthesized by a modified Grignard complex were more consistent with nonrandom or first-order Markovian statistics.  相似文献   

13.
This work shows why it is imperious to use an excess of butyllithium for a directed ortho-lithiation of a trifluoromethyl sulfoximine. The analysis of mixtures of n-BuLi and sulfoximine 1 in THF-d8 using {1H, 6Li, 13C, 15N, 19F} NMR experiments at low temperatures reveal that a first deprotonation occurs that leads to dimeric and tetrameric N-lithiated sulfoximine (93 : 7). Using an excess n-BuLi (5 equivalents), the second deprotonation on the ortho-position of the aromatic occurs. Six species were observed and characterized on the way. It includes three aggregates involving a sulfoximine: i) a [dilithiated sulfoximine/(n-BuLi)] dimer solvated by four molecules of THF ( Agg2 , 39 %); ii) a [dilithiated sulfoximine/(n-BuLi)3] tetramer solvated by six molecules of THF ( Agg3 , 39 %); iii) a [dilithiated sulfoximine/(n-BuOLi)3] tetramer solvated by four molecules of THF ( Agg1 , 22 %). A DFT study afforded optimized solvated structures for all these aggregates, fully consistent with the NMR data.  相似文献   

14.
Anionic polymerization of ferrocenylmethyl methacrylate (FMMA) was investigated using high-vacuum techniques. Initiators used included n-butyllithium, sodium naphthalide, potassium naphthalide, Grignard reagents (both C2H5MgBr and C6H5MgBr), sodium methoxide, and lithium aluminum hydride. FMMA polymerization was readily initiated by each of the above initiators with the exception of sodium methoxide. The molecular weight of poly(ferrocenylmethyl methacrylate) could be controlled by varying the monomer-to-initiator ratio when lithium aluminum hydride was used in tetrahydrofuran (THF). In this system, poly(ferrocenylmethyl methacrylate), soluble in benzene or THF, was prepared with M?n as high as 277,000 with a relatively narrow molecular weight distribution compared to samples prepared by radical-initiated polymerization. The Mark-Houwink values of K and a, determined in THF, were K = 4.94 × 10?2 and a = 0.53 (when M = M?n) and K = 3.72 × 10?2 and a = 0.51 (when M = M?w). It is clear that the polymer is moderately coiled in THF.  相似文献   

15.
The methoxy 1H-NMR assignments in the 2.1–3.7δ region for styrene/methyl methacrylate copolymers have been assessed in terms of pentad sensitivity. Several of the methoxy resonances suggested by this study differ from literature assignments. The evidence in support of these reasignments is based on a comparison of calculated and observed triad distributions and on the good agreement of the value of the reactivity ratio rM calculated from individual triads with that obtained by classical methods. A new procedure for the determination of the tacticity coefficient σ is applied.  相似文献   

16.
张艺  许家瑞 《高分子科学》2013,31(6):894-900
A new macromolecular surface modifier, a copolymer of lauryl methacrylate (LMA) and poly(ethylene glycol) methyl methacrylate (PEGMA), was synthesized through free radical polymerization. The copolymer was characterized by nuclear magnetic resonance spectrum (1H-NMR) and thermogravimetric analysis (TGA). The copolymer was used to blend with polyethylene. The binary blends have been characterized by attenuated total reflection/Fourier transform infrared (ATR-FTIR), contact-angle measurements (CDA) and scanning electron microscopy (SEM). The results indicated that poly(ethylene glycol) methyl methacrylate-co-lauryl methacrylate (PEGMA-co-LMA) could diffuse preferably onto the surface of the polyethylene (PE) film, and thus can be used as an efficient surface modifier for PE.  相似文献   

17.
Unusual assignments have been observed for the 1H-NMR of alkoxy groups in syndiotactic methyl methacrylate-methacrylic acid (MMA-MAA) copolymers and methyl methacrylate-diphenylmethyl methacrylate (MMA-DPMMA) copolymers. Thereby, the alkoxy groups OCH3 and OCH show a degenerate pentad assignment, in as much as the two monomer units nearest to the central monomer unit exert no differentiating influence on chemical shift, in contrast to the two next-to-nearest monomer units. By the use of copolymers possessing a tendency toward alternation with respect to compositional statistics, it is possible to distinguish between a degenerate pentad and a normal triad assignment. The reason for the degenerate pentad assignment is seen in specific conformations of the pentads, leading to the elimination of the differentiating influence on chemical shift for the two monomer units nearest to the central unit.  相似文献   

18.
Different poly(tert-butyl methacrylate) (PTBMA)-poly(alkyl methacrylate) (PAMA, alkyl=CH3, n-C4H9) triblock copolymers were synthesized by group transfer polymerization. They were obtained by first preparing “living” PAMA using a difunctional initiator, followed by polymerization of TBMA in THF at room temperature, in the presence of a nucleophilic catalyst. The segment molecular weights and compositions of TBMA segment could be controlled by regulating the feed ratio of two monomers and the ratio of monomer to initiator. As supported by 1H-NMR, IR analysis, and titration, the PTBMA blocks could be quantitatively hydrolyzed into poly(methacrylic acid) (PMAA) blocks whereas the PAMA blocks were not hydrolyzed. The water-soluble amphiphiles prepared by neutralization of the PMAA block displayed surface-active behavior in water, which was characterized by a critical micelle concentration. The thermogravimetric analysis demonstrated the loss of tert-butyl groups. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
α-Alkylacrylic acids (RAA's) bearing n-alkyl groups were found to homopolymerize with slower rates than acrylic and methacrylic acids to number-average molecular, weight (M?n) of 104 or above. When the α-substituent was a branched alkyl group, the polymerization rate and M?n decreased further. Reactivities of RAA's in copolymerization were interpreted by steric and resonance effects of the alkyl group using Hancock's steric substituent constant. Comparison of the reactivities of RAA's with those of methyl α-alkylacrylates revealed that replacement with the smaller carboxyl group facilitates polymerization and copolymerization. Preference of co-syndiotactic propagation in the copolymerization of methacrylic acid with styrene changed to random fashion in the copolymerization of the α-higher alkyl derivatives. After methylation with diazomethane, the homopolymers were shown to be thermally less stable than poly(methyl methacrylate). Tg's of poly(methyl α-ethylacrylate) and poly(methyl α-n-propylacrylate) were 57 and 25°C, respectively.  相似文献   

20.
Poly[2‐(3‐nitrocarbazolyl)ethyl methacrylate] (poly(NCzMA)) with controlled molecular weight and narrow molecular weight distribution was successfully synthesized using (methyl methacryloyl)potassium (MMA) as a weak initiator in the presence of diethylzinc (Et2Zn) in THF at –78°C. Et2Zn acted both as an additive for the coordination with enolate anion and nitro group and as a scavenger to remove impurities. Block copolymers PMMA‐block‐poly(NCzMA)‐block‐PMMA and poly(NCzMA)‐block‐PS‐block‐poly(NCz‐MA), were also synthesized quantitatively (PMMA: poly(methyl methacrylate), PS: polystyrene). The results indicate that Et2Zn can be used to synthesize the polymers of solid, nitro group‐containing methacrylate monomers by anionic polymerization in THF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号