首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Henstra 《Molecular physics》2013,111(7):859-871
Nuclear orientation via electron spin locking (NOVEL) is a technique to orient nuclear spins embedded in a solid. Like other methods of dynamic nuclear polarization (DNP) it employs a small amount of unpaired electron spins and uses a microwave field to transfer the polarization of these unpaired electron spins to the nuclear spins. Traditional DNP uses CW microwave fields, but NOVEL uses pulsed electron spin resonance (ESR) techniques: a 90 degree pulse–90 degree phase shift–locking pulse sequence is applied and during the locking pulse the polarization transfer is assured by satisfying the Hartmann–Hahn condition. The transfer is coherent and similar to coherence transfer between nuclear spins. However, NOVEL requires an extension of the existing theory to many, inequivalent nuclear spins and to arbitrary, i.e. high electron and nuclear spin polarization. In this paper both extensions are presented. The theory is applied to the system naphthalene doped with pentacene, where the proton spins are polarized using the photo-excited triplet states of the pentacene molecules and found to show excellent agreement with the experimentally observed evolution of the polarization transfer during the locking pulse.  相似文献   

2.
Exact product operator solutions have been obtained for the evolution of weakly coupled spin-(1/2) I(m)S(n) systems during arbitrary RF irradiation of one spin. These solutions, which completely characterize the nature of J-coupling modulation during RF pulses, show that significant exchange occurs between single-spin magnetization and two-spin product operator states when the RF field strength is comparable to the coupling. In particular, a long (t(p) = [2J](-1) s), low-power (B(1) = J/2 Hz), constant amplitude pulse applied on resonance to one spin in an IS system completely interconverts the spinstates S(z) <--> 2S(x)I(z) and S(x) <--> 2S(z)I(z) when the RF is applied to the S spins, and interconverts S(x) <--> 2S(y)I(y) in 100% yield when the RF is applied to the I spins. Thus, these "J pulses," which select a bandwidth approximately equal to J Hz, may replace any combination of a (2J)(-1) delay period and a consecutive hard 90 degrees pulse in any polarization transfer or multiple quantum sequence. Although these rectangular pulses are highly frequency selective, in general they increase the replaced (2J)(-1) period by only a modest 40%, a time saving of a factor of 5 compared to existing pulses exhibiting the same selectivity. In favorable cases, there is no increase in duration of a pulse sequence using a particular type of J pulse, the 90(J) variety, which accomplishes the third spin state transformation listed above. J pulses will be advantageous for systems subject to rapid signal loss from relaxation and more generally for the enhanced operation of pulse sequences via the use of J modulation during RF irradiation.  相似文献   

3.
Establishing correlations among distant (>3 Å) spins remains an outstanding problem for both spectral assignment and elucidation of interhelical contacts in solid-state NMR of oriented membrane proteins. Here we present a pulse sequence which incorporates the previously established mismatched Hartmann–Hahn mixing of dilute spins via the proton bath together with high-resolution local field spectroscopy. In addition to providing structural information, the use of dipolar couplings in the indirect dimension helps eliminate the spectral crowdedness compared to the standard homonuclear correlation techniques. The proposed pulse sequence may find its use in assigning protein spectra in uniaxially oriented membrane environments.  相似文献   

4.
A high resolution two-dimensional solid state NMR experiment is presented that correlates half-integer quadrupolar spins with protons. In this experiment the quadrupolar nuclei evolve during t1 under a split-t1, FAM-enhanced MQMAS pulse scheme. After each t1 period ending at the MQMAS echo position, single quantum magnetization is transferred, via a cross polarization process in the mixing time, from the quadrupolar nuclei to the protons. High-resolution proton signals are then detected in the t2 time domain during wPMLG5* homonuclear decoupling. The experiment has been demonstrated on a powder sample of sodium citrate and 23Na-1H 2D correlation spectra have been obtained. From the HETCOR spectra and the regular MQMAS spectrum, the three crystallographically inequivalent Na+ sites in the asymmetric unit were assigned. This MQMAS-wPMLG HETCOR pulse sequence can be used for spectral editing of half-integer quadrupolar nuclei coupled to protons.  相似文献   

5.
A scheme capable of acquiring heteronuclear 2D NMR spectra of hyperpolarized sample is described. Hyperpolarization, the preparation of nuclear spins in a polarized state far from thermal equilibrium, can increase the NMR signal by several orders of magnitude. It presents opportunities to apply NMR spectroscopy to dilute samples that would otherwise yield insufficient signal. However, conventional 2D NMR spectroscopy, which is commonly applied for the determination of molecular structure, relies on the recovery of the initial polarization after each transient. For this reason, it cannot be applied directly to a sample that has been hyperpolarized once. With appropriately modified pulse schemes, two-dimensional NMR spectra an however be acquired sequentially by utilizing a small portion of the hyperpolarized signal in every scan, while keeping the remaining polarization for future scans. We present heteronuclear multi-quantum spectra of single hyperpolarized samples using this technique, and discuss different options for distributing the polarization among different scans. This robust method takes full advantage of Fourier NMR to resolve overlapping chemical shifts, and may prove particularly useful for the structural elucidation of compounds in mass-limited samples.  相似文献   

6.
A proton spectral editing pulse sequence for the detection of metabolites with spin systems that involve weak coupling is presented. The sequence is based on homonuclear polarization transfer incorporated into the standard PRESS (Point RESolved Spectroscopy) sequence, which is a volume-selective double spin echo method, to enable spatial localization. All peaks in the region of interest are initially suppressed whether they are peaks from the target metabolite or from contaminating background. The target signal is then restored by polarization transfer from a proton that has a resonance outside the suppressed region and to which the target spins are weakly coupled. This is achieved by the application of a 90 degrees hard pulse with phase orthogonal to that of the PRESS excitation pulse at the location of the first echo in PRESS and by optimizing the two PRESS timings, TE(1) and TE(2), for most efficient yield. Background signal not coupled to any protons outside the initially saturated region remains suppressed. The advantage of this sequence compared to multiple quantum filters is that signal from singlet peaks outside the suppressed area are preserved and can thus be used as a reference. The efficacy of the sequence was verified experimentally on phantom solutions of lactate and glutathione at 3.0 T. For the AX(3) spin system of lactate, the sequence timings were optimized by product operator calculations whereas for the ABX spin system of the cysteinyl group of glutathione numerical calculations were performed for sequence timing optimization.  相似文献   

7.
A new scheme combining a Lee-Goldburg (LG) sequence with frequency modulation is proposed for cross-polarization (LG-FMCP) in solid-state magic-angle-spinning nuclear magnetic resonance. During the CP contact time, the (1)H magnetization is spin-locked along the magic angle by the LG sequence and the irradiation offset of the S spins (e.g., (15)N) is modulated sinusoidally with a constant RF amplitude. It is shown experimentally that the LG sequence significantly lengthens the proton spin-lattice relaxation time in the tilted rotating frame and that the frequency modulation shortens the cross-polarization time for non-protonated S spins. As a result of substantially increasing the difference in these relaxation rates, the non-protonated and protonated S spins can be more efficiently and more uniformly polarized with a relatively long CP contact time, making quantitative CP measurements possible. A sample of (15)N-delta 1-L-histidine lyophilized from a solution of pH 6.3 and a (15)N-delta 1-L-His labeled transmembrane helical peptide in hydrated lipid bilayers were used to illustrate the advantages of this scheme.  相似文献   

8.
The main purpose of homonuclear Hartmann-Hahn or TOCSY experiments is the assignment of spin systems based on efficient coherence transfer via scalar couplings. In partially aligned samples, however, magnetization is also transferred via residual dipolar couplings (RDCs) and therefore through space correlations can be observed in COSY and TOCSY experiments that make the unambiguous assignment of covalently bound spins impossible. In this article, we show that the JESTER-1 multiple pulse sequence, originally designed for broadband heteronuclear isotropic Hartmann-Hahn transfer, efficiently suppresses the homonuclear dipolar coupling Hamiltonian. This suppression can be enhanced even further by variation of the supercycling scheme. The application of the resulting element in homonuclear TOCSY periods results in coherence transfer via J-couplings only. As a consequence, the assignment of scalar coupled spin systems is also possible in partially aligned samples. The bandwidth of coherence transfer for the JESTER-1-derived sequences is comparable to existing TOCSY multiple pulse sequences. Results are demonstrated in theory and experiment.  相似文献   

9.
Spectral localization using the stimulated-echo acquisition mode (STEAM) is one of the most popular methods in volume-localizedin vivoNMR spectroscopy. The localized volume signal is generated via stimulated echoes from spins excited by three 90° RF pulses, and the conventional STEAM sequence detects the stimulated-echo signal. From an analysis of the STEAM pulse sequence using the coherence transfer pathway formalism, stimulated anti-echoes are also formed by the same pulse sequence, which constitute the other half of the localized signal in the STEAM experiment. A new scheme of pulsed field gradients for the selection of stimulated anti-echoes was proposed, and localized spectroscopy in the stimulated anti-echo selection mode was achieved on a phantom and fromin vivorat brain.  相似文献   

10.
We polarize nuclear spins in a GaAs double quantum dot by controlling two-electron spin states near the anticrossing of the singlet (S) and m(S)= +1 triplet (T+) using pulsed gates. An initialized S state is cyclically brought into resonance with the T+ state, where hyperfine fields drive rapid rotations between S and T+, "flipping" an electron spin and "flopping" a nuclear spin. The resulting Overhauser field approaches 80 mT, in agreement with a simple rate-equation model. A self-limiting pulse sequence is developed that allows the steady-state nuclear polarization to be set using a gate voltage.  相似文献   

11.
An optimized intraresidual pulse sequence element with better sensitivity and suppression of sequential cross peaks is presented. Concatenation of three magnetization transfer delays allows their independent setting, in accordance with the relaxation properties of the individual spins, without concomitantly prolonging the pulse sequence. Additionally, implementations of the scheme to HNCA, HNCACB, and the TROSY based triple-resonance experiments are proposed. The feasibility of the new element was verified by recording HNCA and HNCACB on the small 8.6 kDa protein ubiquitin. The corresponding HNCA-TROSY experiment was tested on a larger protein, the 30.4 kDa Cel6A from the thermophilic soil bacterium Thermobifida fusca at 800 (1)H MHz.  相似文献   

12.
A novel scheme for all-optical frequency multiplication/recovery based on a semiconductor optical amplifier ring cavity is proposed and investigated numerically. The results show, for a 2.5 GHz driving pulse train, it can be generated 5-25 GHz repetition rate pulse trains with low clock amplitude jitter, polarization independence and high peak power. Furthermore, the extraction of the clock signal from a pseudorandom bit sequence signal can be realized based on the proposed scheme.  相似文献   

13.
Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios (s/n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1HN recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (=0.81) than the non-saturated ones (=0.88), indicating such order parameters may be previously underestimated.  相似文献   

14.
A (1)H-(19)F spin state selective excitation (S(3)E) pulse sequence element has been applied in combination with (1)H homonuclear mixing to create E.COSY-type experiments designed to measure scalar J(HF2') and J(HH2') and residual dipolar D(HF2') and D(HH2') couplings in 2'-deoxy-2'-fluoro-sugars. The (1)H-(19)F S(3)E pulse sequence element, which resembles a simple INEPT sequence, achieves spin-state-selective correlation between geminal (1)H-(19)F spin pairs by linear combination of in-phase (19)F magnetization and anti-phase magnetization evolved from (1)H. Since the S(3)E sequence converts both (19)F and (1)H steady-state polarization into observable coherences, an approximately twofold signal increase is observed for fully relaxed (1)H-(19)F spin pairs with respect to a standard (1)H coupled (19)F 1D experiment. The improved sensitivity and resolution afforded by the use of (1)H-(19)F S(3)E E.COSY-type experiments for measuring couplings is demonstrated on the nucleoside 9-(2',3'-dideoxy-2'-fluoro-beta-D-threo-pentofuranosyl)adenine (beta-FddA) and on a selectively 2'-fluorine labeled 21mer RNA oligonucleotide.  相似文献   

15.
Mack AH  Riordon J  Dean CR  Talbot R  Gervais G 《Optics letters》2007,32(11):1378-1380
A fiber-optic-based polarization control system that uses a backreflection measurement scheme at low temperatures has been developed. This provides a stringent test of the light polarization state at the output of the fiber, allowing for determination and control of the degree of circular polarization; i.e., it can generate linear, right, or left circular polarization with cryogenic fibers. This polarization controller is paving the way toward the control and manipulation of nuclear spins in semiconductors via the optical Overhauser effect and could be used, for example, for the purpose of quantum information processing with the large nuclear spins of GaAs.  相似文献   

16.
Optimal control of spin dynamics in the presence of relaxation   总被引:1,自引:0,他引:1  
Experiments in coherent spectroscopy correspond to control of quantum mechanical ensembles guiding them from initial to final target states. The control inputs (pulse sequences) that accomplish these transformations should be designed to minimize the effects of relaxation and to optimize the sensitivity of the experiments. For example in nuclear magnetic resonance (NMR) spectroscopy, a question of fundamental importance is what is the maximum efficiency of coherence or polarization transfer between two spins in the presence of relaxation. Furthermore, what is the optimal pulse sequence which achieves this efficiency? In this paper, we give analytical answers to the above questions. Unexpected gains in sensitivity are reported for one of the most commonly used experimental building blocks in NMR spectroscopy. Surprisingly, in the case when longitudinal relaxation is small, the relaxation optimized pulse elements (ROPE) that transfer maximum polarization between coupled spins are longer than conventional sequences.  相似文献   

17.
该文介绍了一种自行设计和构建的可扩展脉冲动态核极化谱仪,可以实现核磁共振波谱与磁共振成像的功能.该仪器的新颖设计主要有:1) 采用基于PCIe 的分布式总线结构,能够极大地提高数据传输效率和通信可靠性,实现精确控制脉冲序列;2) 采用外部高速的DDR 芯片存储脉冲序列元素和FID 数据,可以极大的提高脉冲序列的执行速度,减少快速成像序列的TR 时间间隔;3) 采用时钟移相技术,可以精确产生分辨率为纳秒级别的数字脉冲.最后对该仪器的动态核极化-磁共振波谱与核磁共振成像功能进行了实验验证.  相似文献   

18.
A new two-dimensional pulse sequence for T(2)* measurement of protons directly coupled to (13)C spins is proposed. The sequence measures the tranverse relaxation time of heteronuclear proton single-quantum coherence under conditions of free precession and is therefore well suited to evaluate relaxation losses of proton magnetization during preparation delays of heteronuclear pulse experiments in analytical NMR. The relevant part of the pulse sequence can be inserted as a "building block" into any direct or inverse detecting H,C correlation pulse sequence if proton spin-spin relaxation is to be investigated. In this contribution, the building block is inserted into a HETCOR as well as into a HMQC pulse sequence. Experimental results for the HETCOR-based sequence are given.  相似文献   

19.
Perturbation approach to time evolution of multi-spin systems containing quadrupole and dipolar spins has been presented and discussed. The treatment comprises polarization transfer effects, field-dependent relaxation processes of dipolar as well as quadrupole spins and combined results of both of them. Complete theories dealing with various aspects of the spin dynamic processes have been proposed. Because of an educational character of this paper, relevant assumptions, limitations and even particular steps of the proposed treatments have been discussed in detail. Special emphasis is put on understanding of validity regimes of the perturbation treatment, depending on relative strengths of spin interactions and timescales of relevant motional processes affecting them. Motional regimes required for spins to be involved in essentially different evolution pathways like polarization transfers or relaxation have been illustrated by experimental examples.  相似文献   

20.
The most detailed and reliable information about the magnetic state (magnetization depth profiles) of layers can be obtained by neutron reflectometry with vector polarization analysis. Two schemes of realization of this technique are considered. Precession coils designed to manipulate the polarization vector of monochromatic beams are used in scheme I. This scheme was tested at the neutron reflectometer NR-4M (PNPI, Gatchina). The earliest experimental data on the polarization vector rotation are reported, giving direct evidence of the wave function phase shift of a massive particle, the neutron, under total reflection. The basic elements for scheme II are remanent supermirrors. This scheme is designed for use with a white beam and is advantageous for pulse neutron sources. The effect of stray fields produced by remanent supermirrors on the neutron polarization has been theoretically and experimentally evaluated; efficient ways of compensating the stray fields are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号