首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constrained adaptation for feedback cancellation in hearing aids.   总被引:1,自引:0,他引:1  
In feedback cancellation in hearing aids, an adaptive filter is used to model the feedback path. The output of the adaptive filter is subtracted from the microphone signal to cancel the acoustic and mechanical feedback picked up by the microphone, thus allowing more gain in the hearing aid. In general, the feedback-cancellation filter adapts on the hearing-aid input signal, and signal cancellation and coloration artifacts can occur for a narrow-band input. In this paper, two procedures for LMS adaptation with a constraint on the magnitude of the adaptive weight vector are derived. The constraints greatly reduce the probability that the adaptive filter will cancel a narrow-band input. Simulation results are used to demonstrate the efficacy of the constrained adaptation.  相似文献   

2.
Feedback whistling is a severe problem with hearing aids. A typical acoustical feedback path represents a wave propagation path from the receiver to the microphone and includes many complicated effects among which some are invariant or nearly invariant for all users and in all acoustical environments given a specific type of hearing aids. Based on this observation, a feedback path model that consists of an invariant model and a variant model is proposed. A common-acoustical-pole and zero model-based approach and an iterative least-square search-based approach are used to extract the invariant model from a set of impulse responses of the feedback paths. A hybrid approach combining the two methods is also proposed. The general properties of the three methods are studied using artificial datasets, and the methods are cross-validated using the measured feedback paths. The results show that the proposed hybrid method gives the best overall performance, and the extracted invariant model is effective in modeling the feedback path.  相似文献   

3.
Sound localization with hearing aids has traditionally been investigated in artificial laboratory settings. These settings are not representative of environments in which hearing aids are used. With individual Head-Related Transfer Functions (HRTFs) and room simulations, realistic environments can be reproduced and the performance of hearing aid algorithms can be evaluated. In this study, four different environments with background noise have been implemented in which listeners had to localize different sound sources. The HRTFs were measured inside the ear canals of the test subjects and by the microphones of Behind-The-Ear (BTEs) hearing aids. In the first experiment the system for virtual acoustics was evaluated by comparing perceptual sound localization results for the four scenes in a real room with a simulated one. In the second experiment, sound localization with three BTE algorithms, an omnidirectional microphone, a monaural cardioid-shaped beamformer and a monaural noise canceler, was examined. The results showed that the system for generating virtual environments is a reliable tool to evaluate sound localization with hearing aids. With BTE hearing aids localization performance decreased and the number of front-back confusions was at chance level. The beamformer, due to its directivity characteristics, allowed the listener to resolve the front-back ambiguity.  相似文献   

4.
Suppressing unstable acoustic feedback in hearing aids will first require knowledge of the open-loop transfer functions of such systems. Reported herein is a mathematical technique for simulating the open-loop transfer function of an in situ eyeglass-type hearing aid. In particular, a computer program was developed that characterized the hearing aid as a serial connection of two-port blocks, each representing one individual component of a hearing aid. Included, for example, were two-port blocks representing the microphone, amplifier, receiver, sound tubes leading to the eardrum (including the ear canal itself), earmold vent, and external pathway from the vent outlet back to the microphone. The computer program was validated by replicating laboratory data derived from an experiment involving a nonstandard manikin fitted with a nonstandard artificial ear. Next, the open-loop transfer function of an eyeglass-type hearing aid in situ on the manikin was simulated via the computer program. Unfortunately, those computer-generated data were not replicated in the laboratory due to the difficulty encountered in actually measuring the open-loop transfer function. Nevertheless, investigators were able to utilize those data to predict, within +/- 25 Hz, the "squeal" frequency of unstable acoustic feedback.  相似文献   

5.
This paper studies the effect of bilateral hearing aids on directional hearing in the frontal horizontal plane. Localization tests evaluated bilateral hearing aid users using different stimuli and different noise scenarios. Normal hearing subjects were used as a reference. The main research questions raised in this paper are: (i) How do bilateral hearing aid users perform on a localization task, relative to normal hearing subjects? (ii) Do bilateral hearing aids preserve localization cues, and (iii) Is there an influence of state of the art noise reduction algorithms, more in particular an adaptive directional microphone configuration, on localization performance? The hearing aid users were tested without and with their hearing aids, using both a standard omnidirectional microphone configuration and an adaptive directional microphone configuration. The following main conclusions are drawn. (i) Bilateral hearing aid users perform worse than normal hearing subjects in a localization task, although more than one-half of the subjects reach normal hearing performance when tested unaided. For both groups, localization performance drops significantly when acoustical scenarios become more complex. (ii) Bilateral, i.e., independently operating hearing aids do not preserve localization cues. (iii) Overall, adaptive directional noise reduction can have an additional and significant negative impact on localization performance.  相似文献   

6.
Acoustic feedback in hearing aids has received little attention in the literature. Feedback occurs when stability conditions of the open-loop transfer function of an in situ hearing aid are violated. Solving the feedback problem will first require knowledge of the open-loop transfer function. Included in the open-loop transfer function is the acoustical path by which sound emanating from the earmold vent returns to the microphone (i.e., the feedback path). Reported herein are two different mathematical procedures for simulating transfer functions of the feedback path of an eyeglass-type hearing aid. In one procedure the vent exit was modeled as a point source of sound located on a flat plane, while it was treated as a point source on a sphere in the other. Results of laboratory experiments indicate that the mathematical models accurately predict those acoustic phenomena for which they were intended: point sources on plane and spherical baffles. Results of manikin experiments showed both models to be less accurate for simulating the feedback path around the human head. The maximum difference between experiment and theory was 6 dB at one frequency. Surprisingly, the flat-baffle model produced better agreement with experimental results than did the sphere model.  相似文献   

7.
Wind noise reduction is a topic of ongoing research and development for hearing aids and cochlear implants. The purposes of this study were to examine spectral characteristics of wind noise generated by directional (DIR) and omnidirectional (OMNI) microphones on different styles of hearing aids and to derive wind noise reduction strategies. Three digital hearing aids (BTE, ITE, and ITC) were fitted to Knowles Electronic Manikin for Acoustic Research. They were programmed to have linear amplification and matching frequency responses between the DIR and OMNI modes. Flow noise recordings were made from 0° to 360° azimuths at flow velocities of 4.5, 9.0, and 13.5 m/s in a quiet wind tunnel. Noise levels were analyzed in one-third octave bands from 100 to 8000 Hz. Comparison of wind noise revealed that DIR generally produced higher noise levels than OMNI for all hearing aids, but it could result in lower levels than OMNI at some frequencies and head angles. Wind noise reduction algorithms can be designed to detect noise levels of DIR and OMNI outputs in each frequency channel, remove the constraint to switch to OMNI in low-frequency channel(s) only, and adopt the microphone mode with lower noise levels to take advantage of the microphone differences.  相似文献   

8.
Speech-reception threshold in noise with one and two hearing aids   总被引:1,自引:0,他引:1  
The binaural free-field speech-reception threshold (SRT) in 70-dBA noise was measured with conversational sentences for 24 hearing-impaired subjects without hearing aids, with a hearing aid left, right, and left plus right, respectively. The sentences were always presented in front of the listener and the interfering noise, with a spectrum equal to the long-term average spectrum of the sentences, was presented either frontally, from the right, or from the left side. For subjects with only moderate hearing loss, PTA (average air-conduction hearing level at 500, 1000, and 2000 Hz) less than 50 dB, the SRT in 70-dBA noise in both ears is determined by the signal-to-noise ratio even if only one hearing aid is used. For larger hearing losses the SRT appears to be partly determined by the absolute threshold. In conditions with a high noise level relative to the absolute threshold, in which case for both ears the SRT is determined by the signal-to-noise ratio, a second hearing aid, just as a monaural hearing aid, generally does not improve the SRT. However, in the case of a high hearing level, or a low noise level, in which a monaural hearing aid is profitable, the use of two hearing aids is even more profitable. In a separate experiment, acoustic head shadow was measured at the entrance of the ear canal and at the microphone location of a hearing aid. It appeared that, for a lateral noise source and speech frontal, the microphone position of behind-the-ear hearing aids has a negative effect on the signal-to-noise ratio of 2-3 dB.  相似文献   

9.
It has been demonstrated that the Filtered-x Wilcoxon LMS (FxWLMS) based adaptive filter mitigates the effect of the outliers acquired by the microphone signal of hearing aids by minimizing the Wilcoxon norm and hence shows better cancellation performance than the existing Filtered-x LMS (FxLMS) algorithm. The prediction error method based adaptive feedback canceller (PEMAFC) reduces the bias present in the estimate of the feedback path due to the continuous adaptive filtering (CAF). However, the impulse response of the measured feedback path is close to zero for the first many samples due to the delay introduced by ADC converters and then contains few significant values, which results in slow convergence rate when an adaptive filter is used to model the same. To overcome this limitation, we propose a proportionate normalized WLMS (PNWLMS) algorithm based PEMAFC (P-PNWLMS) for feedback cancellation in hearing aid in the presence of outliers. Further, with an objective to improve the convergence rate and performance accuracy simultaneously, this paper proposes a novel convex PNWLMS (CPNWLMS) algorithm which incorporates convex combination of PNWLMS and WLMS algorithms. The weight update equations are derived for PEMAFC trained by PNWLMS (P-PNWLMS) and CPNWLMS (P-CPNWLMS) algorithms respectively. The results of the simulation study show improved performance of the proposed CPNWLMS based adaptive filter over its component filters.  相似文献   

10.
Adaptive linear filtering algorithms are commonly used to cancel feedback in hearing aids. The use of these algorithms is based on the assumption that the feedback path is linear, so nonlinearities in the feedback path may affect performance. This study investigated the effect on feedback canceller performance of clipping of the feedback signal arriving at the microphone, as well as the benefit of applying identical clipping to the cancellation signal so that the cancellation path modeled the nonlinearity of the feedback path. Feedback signal clipping limited the amount of added stable gain that the feedback canceller could provide, and caused misadjustment in response to high-level inputs, by biasing adaptive filter coefficients toward lower magnitudes. Cancellation signal clipping mitigated these negative effects, permitting higher amounts of added stable gain and less misadjustment in response to high-level inputs, but the benefit was reduced in the presence of the highest-level inputs.  相似文献   

11.
There are numerous articles wherein mathematical models of various parts of an in situ hearing aid have been reported. Such parts include, for example, the microphone, receiver, cylindrical tubes carrying sound to the eardrum and out through the earmold vent, and the external path from the vent back to the microphone. This article extends these earlier works to include the hearing-aid amplifier. In particular, a mathematical technique for characterizing the amplifier in combination with the receiver is reported. Cascade parameters of a two-port model of one particular amplifier/receiver combination are obtained by this method. The cascade-parameter data and the method of obtaining this data are verified by two different experimental procedures. One procedure involves both computing and measuring the input driving-point impedance of the amplifier/receiver combination. In the second procedure, the amplifier-to-eardrum transfer function of a hearing aid incorporating this same amplifier/receiver combination and mounted on an artificial ear is both computed and measured. Experimental and computed values of this transfer function for three different earmold geometries are in reasonably close agreement. The amplifier/receiver model reported herein will be used in future studies of acoustic feedback in hearing aids.  相似文献   

12.
The feedback problems of behind the ear (BTE), in the ear (ITE), and in the ear canal (ITEC) hearing aid categories have been investigated. All possible feedback paths (acoustical via vent, via tubing wall, mechanical, etc.) were converted to a single transfer function from the ear canal to the hearing aid microphone, here called the acoustic feedback equivalent (AFE). The attenuation of the AFE represents the maximum gain that can be used without the hearing aid starting to howl. Magnitude and phase responses of the AFE were identified on ten human subjects and on a Knowles ear manikin (KEMAR). The acoustic feedback via vent and leak between earmould and ear canal dominated the AFE. The transfer function from a reference point under the ear to the position of microphone of the different hearing aid categories was identified and used together with the AFE to calculate the maximum real ear aided gain (REAG) for the hearing aid categories. A model of the AFE, consisting of a fourth-order filter together with a delay, showed good agreement with the measured data.  相似文献   

13.
The response of a hearing aid is affected by many factors which include the head and outer ear, the microphone, amplifier, and receiver used in the hearing aid, the properties of the ear canal and the eardrum, and acoustic feedback through the vent. This article presents a computer simulation of an in-the-ear (ITE) hearing aid that includes all of the above factors. The simulation predicts the pressure at the eardrum for a frontal free-field sound source. The computer model was then used to determine the effects on the hearing aid response due to variations in the size of the ear canal. The simulation indicates that, for an unvented hearing aid, changes in the size of the ear canal shift the overall sound-pressure level at the eardrum but have only small effects on the shape of the frequency response. The situation is more complicated when a vent is present, however, since changes in the size of the ear canal that cause apparently small perturbations in the acoustic feedback signal may, nonetheless, have large effects on the overall system response.  相似文献   

14.
As advanced signal processing algorithms have been proposed to enhance hearing protective device (HPD) performance, it is important to determine how directional microphones might affect the localization ability of users and whether they might cause safety hazards. The effect of in-the-ear microphone directivity was assessed by measuring sound source identification of speech in the horizontal plane. Recordings of speech in quiet and in noise were made with Knowles Electronic Manikin for Acoustic Research wearing bilateral in-the-ear hearing aids with microphones having adjustable directivity (omnidirectional, cardioid, hypercardioid, supercardioid). Signals were generated from 16 locations in a circular array. Sound direction identification performance of eight normal hearing listeners and eight hearing-impaired listeners revealed that directional microphones did not degrade localization performance and actually reduced the front-back and lateral localization errors made when listening through omnidirectional microphones. The summed rms speech level for the signals entering the two ears appear to serve as a cue for making front-back discriminations when using directional microphones in the experimental setting. The results of this study show that the use of matched directional microphones when worn bilaterally do not have a negative effect on the ability to localize speech in the horizontal plane and may thus be useful in HPD design.  相似文献   

15.
This paper evaluates the influence of three multimicrophone noise reduction algorithms on the ability to localize sound sources. Two recently developed noise reduction techniques for binaural hearing aids were evaluated, namely, the binaural multichannel Wiener filter (MWF) and the binaural multichannel Wiener filter with partial noise estimate (MWF-N), together with a dual-monaural adaptive directional microphone (ADM), which is a widely used noise reduction approach in commercial hearing aids. The influence of the different algorithms on perceived sound source localization and their noise reduction performance was evaluated. It is shown that noise reduction algorithms can have a large influence on localization and that (a) the ADM only preserves localization in the forward direction over azimuths where limited or no noise reduction is obtained; (b) the MWF preserves localization of the target speech component but may distort localization of the noise component. The latter is dependent on signal-to-noise ratio and masking effects; (c) the MWF-N enables correct localization of both the speech and the noise components; (d) the statistical Wiener filter approach introduces a better combination of sound source localization and noise reduction performance than the ADM approach.  相似文献   

16.
Room reverberation can affect feedback cancellation in hearing aids, with the strength of the effects depending on the acoustical conditions. These effects were studied using a behind the ear (BTE) hearing aid mounted on a dummy head and coupled to the ear canal via an open fitting. The hearing aid impulse response was measured for the dummy head placed at eight closely spaced locations in a typical office. The feedback cancellation in the hearing aid used a set of filter coefficients that were initialized for one location within the room, and then allowed to adapt to the feedback path measured at the same or to a different location. The maximum stable gain for the hearing aid was then estimated without feedback cancellation, for the initial set of feedback cancellation filter coefficients prior to adaptation, and for the feedback cancellation filter after adaptation. A low-order ARMA model combining a fixed set of poles with an adaptive FIR filter is shown to be effective in representing the feedback path exclusive of reverberation. Increasing the adaptive filter length has only a small benefit in improving the feedback cancellation performance due to the inability of the system to model the room reverberation. The mismatch between the modeled and actual feedback paths limits the headroom increase that can be achieved when using feedback cancellation, and varies with the location within the room.  相似文献   

17.
The occlusion effect is commonly described as an unnatural and mostly annoying quality of the voice of a person wearing hearing aids or hearing protectors. As a result, it is often reported by hearing aid users as a deterrent to wearing hearing aids. This paper presents an investigation into active occlusion cancellation. Measured transducer responses combined with models of an active feedback scheme are first examined in order to predict the effectiveness of occlusion reduction. The simulations predict 18 dB of occlusion reduction in completely blocked ear canals. Simulations incorporating a 1 mm vent (providing passive occlusion reduction) predict a combined active and passive occlusion reduction of 20 dB. A prototype occlusion canceling system was constructed. Averaged across 12 listeners with normal hearing, it provided 15 dB of occlusion reduction. Ten of the subjects reported a more natural own voice quality and an appreciable increase in comfort with the cancellation active, and 11 out of the 12 preferred the active system over the passive system.  相似文献   

18.
Noise in miniature microphones   总被引:2,自引:0,他引:2  
The internal noise spectrum in miniature electret microphones of the type used in the manufacture of hearing aids is measured. An analogous circuit model of the microphone is empirically fit to the measured data and used to determine the important sources of noise within the microphone. The dominant noise source is found to depend on the frequency. Below 40 Hz and above 9 kHz, the dominant source is electrical noise from the amplifier circuit needed to buffer the electrical signal from the microphone diaphragm. Between approximately 40 Hz and 1 kHz, the dominant source is thermal noise originating in the acoustic flow resistance of the small hole pierced in the diaphragm to equalize barometric pressure. Between approximately 1 kHz and 9 kHz, the noise originates in the acoustic flow resistances of sound entering the microphone and propagating to the diaphragm. To further reduce the microphone internal noise in the audio band requires attacking these sources. A prototype microphone having reduced acoustical noise is measured and discussed.  相似文献   

19.
A recently proposed noise reduction system intended to facilitate the assessment of click-evoked otoacoustic emission (CEOAE) in noisy environments [Comput. Biol. Med. 30, 341 (2000)] is evaluated using 13 normally hearing ears and 9 ears with a sensorineural hearing loss. The noise reduction system is based on an adaptive noise canceller design using an additional noise-only reference microphone and intended to reduce externally generated noise. The system is tested in quiet and at different levels of white noise. The three main design parameters of the noise reduction system (adaptation time constant, length of the adaptive filter, and position of the noise reference microphone) are varied systematically in different experiments. With the noise reduction system active, CEOAE can be assessed correctly at noise levels which are 5 to 9 dB higher than without the noise reduction system. For the range of adaptation time constants considered (65.6 to 656 ms), no statistically significant effect on the amount of noise reduction is observed. Noise reduction is highest when the reference microphone is positioned close to the ear probe. Using this reference microphone position and adaptive filters of 6.56 ms in length, average noise reductions of 7.17 to 8.50 dB are achieved.  相似文献   

20.
Fourteen prelinguistically profoundly hearing-impaired children were fitted with the multichannel electrotactile speech processor (Tickle Talker) developed by Cochlear Pty. Ltd. and the University of Melbourne. Each child participated in an ongoing training and evaluation program, which included measures of speech perception and production. Results of speech perception testing demonstrate clear benefits for children fitted with the device. Thresholds for detection of pure tones were lower for the Tickle Talker than for hearing aids across the frequency range 250-4000 Hz, with the greatest tactual advantage in the high-frequency consonant range (above 2000 Hz). Individual and mean speech detection thresholds for the Ling 5-sound test confirmed that speech sounds were detected by the electrotactile device at levels consistent with normal conversational speech. Results for three speech feature tests showed significant improvement when the Tickle Talker was used in combination with hearing aids (TA) as compared with hearing aids along (A). Mean scores in the TA condition increased by 11% for vowel duration, 20% for vowel formant, and 25% for consonant manner as compared with hearing aids alone. Mean TA score on a closed-set word test (WIPI) was 48%, as compared with 32% for hearing aids alone. Similarly, mean WIPI score for the combination of Tickle Talker, lipreading, and hearing aids (TLA) increased by 6% as compared with combined lipreading and hearing aid (LA) scores. Mean scores on open-set sentences (BKB) showed a significant increase of 21% for the tactually aided condition (TLA) as compared with unaided (LA). These results indicate that, given sufficient training, children can utilize speech feature information provided through the Tickle Talker to improve discrimination of words and sentences. These results indicate that, given sufficient training, children can utilize speech feature information provided through the Tickle Talker to improve discrimination of words and sentences. These results are consistent with improvement in speech discrimination previously reported for normally hearing and hearing-impaired adults using the device. Anecdotal evidence also indicates some improvements in speech production for children fitted with the Tickle Talker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号